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Finite Dynamical Systems

A Finite Dynamical System (FDS) is a function f : [q]n → [q]n,
where [q]= {0,1, . . . , q−1}.

We denote f = ( f1, . . . , fn) where fv : [q]n → [q].

We refer to x = (x1, . . . , xn) ∈ [q]n as a state where xv ∈ [q].

A fixed point of f is a state x s.t.

f (x)= x.

The guessing number of f :

g( f )= logq |Fix( f )|.
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Interaction graph

The function f can be represented by its interaction graph IG( f ),
with n vertices and where (u,v) is an arc iff fv depends on xu.

For any digraph D, the guessing number of D:

g(D, q) :=max{g( f ) : f ∈ F(D, q)},

F(D, q)= { f : [q]n → [q]n : IG( f )⊆ D},

g( f )= logq |Fix( f )|.

The guessing number was introduced by Riis (Riis 06, Riis 07) in
his study of Network Coding.
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The feedback bound
Let τ(D) denote the size of a minimum feedback vertex set
(complement of a maximum induced acyclic subgraph).

Theorem. For all D and q,

g(D, q)≤ τ(D).

Proof. Let I a MFVS and J =V \ I in topological order. Let
x, y ∈Fix( f ) with xI = yI . Then

x j1 = yj1 = f j1(xI )

x j2 = yj2 = f j2(xI , x j1),
...

x jk = yjk = f jk (xI , xJ− jk ),

and hence x = y.
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The butterfly network
The same message (bit) is sent on all outgoing links

s1 sends x1

d1 wants x1

s2 sends x2

d2 wants x2

i3x1

x1

x2

x2

Figure : Butterfly network
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The butterfly network
The same message (bit) is sent on all outgoing links

s1 sends x1

d1 wants x1

s2 sends x2

d2 wants x2

i3x1

x1

x2

x2

x1x1

Figure : Butterfly network: Routing
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The butterfly network
The same message (bit) is sent on all outgoing links

s1 sends x1

d1 wants x1
x2 + x1 + x2 = x1

s2 sends x2

d2 wants x2
x1 + x1 + x2 = x2

i3x1

x1

x2

x2

x1 + x2x1 + x2

Figure : Butterfly network: Network coding 8 / 27



Network coding and guessing number

Network coding solvability: can all messages be transmitted at
the same time?

Riis converts this problem in terms of guessing number.

The question becomes: for a digraph D associated to the original
Network coding instance,

g(D, q)= τ(D)?
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Butterfly network and guessing number

s1

d1

s2

d2

i3

(a) Butterfly network

1 2

3

(b) Guessing number of K3

In general, g(Kn, q)= n−1 and hence

g(D, q)≥ n−π(D),

the clique cover number of D.
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Entropy of random variables

Let X be a discrete random variable with support X and
distribution pX (x) for all x ∈X .

The q-ary entropy of X :

Hq(X )=− ∑
x∈X

pX (x) logq pX (x),

The entropy is the information (uncertainty) content of X . We
have

0≤ Hq(X )≤ logq |X |,
where H(X )= 0 iff X is deterministic and H(X )= logq |X | iff X is
uniform.
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Definitions

The joint entropy of a pair of variables (X ,Y ):

H(X ,Y ) :=− ∑
(x,y)∈X×Y

pX ,Y (x, y) log pX ,Y (x, y).

We have
H(X ,Y )= H(Y , X )≥max{H(X ),H(Y )}.

The conditional entropy of Y given X :

H(Y |X ) := ∑
x∈X

pX (x)H(Y |X = x).

We have

H(X ,Y )= H(X )+H(Y |X )≤ H(X )+H(Y ).
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Venn diagram of entropy

H(X |Y ) H(Y |X )

H(X ,Y )

H(X ) H(Y )
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Sub-additivity of entropy

Let X1, . . . , Xn a collection of n variables. Build 2n variables, one
for each S = {s1, . . . , sk}⊆V :

XS = (Xs1 , . . . , Xsk ).

(X; has entropy 0.)

Denote H(S) := H(XS) for all S ⊆V .

Theorem. The entropy is sub-additive, i.e. for all S,T ⊆V

H(S∪T)≤ H(S)+H(T).

Proof. H(S∪T)= H(XS, XT )≤ H(XS)+H(XT )= H(S)+H(T).
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Definition
The idea is to study a uniformly chosen fixed point of f :

X f ∼ pX f (x)= 1
|Fix( f )| ∀x ∈Fix( f ).

Then H(X f )= g( f ).

Let x ∈Fix( f ). If we know xNin(v), then we know xv = fv(xNin(v)).

Hence H(X f
v |X f

Nin(v))= 0 and

H(X f
Nin(v)∪v)= H(X f

Nin(v))+H(X f
v |X f

Nin(v))= H(X f
Nin(v)).

The q-ary entropy of D is

H(D, q) := supHq(V ),

sup taken over all families of variables {Xv : v ∈V }, each over [q],
s.t.

H(Nin(v)∪v)= H(Nin(v)) ∀v ∈V .

Theorem. For all D and q, g(D, q)= H(D, q).
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Using entropy: First attempt

The naive entropy of D is ε(D) := suph(V ), supremum taken over
all h : 2V →R s.t.

h(v)≤ 1 ∀v ∈V ,

h(S)≤ h(T) ∀S ⊆ T ⊆V ,

h(S∪T)≤ h(S)+h(T) ∀S,T ⊆V ,

h(Nin(v)∪v)= h(Nin(v)) ∀v ∈V .

Theorem (Riis 06, G 14).

g(D, q)= H(D, q)≤ ε(D)= τ(D).
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Mutual information

Mutual information between X and Y :

I(X ;Y ) := H(X )+H(Y )−H(X ,Y ).

It is the amount of information that X and Y have in common.

Shannon inequality:
I(X ;Y )≥ 0.
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Venn diagram

I(X ;Y )H(X |Y ) H(Y |X )

H(X ,Y )

H(X ) H(Y )

Figure : Venn diagram of entropy
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Submodularity of entropy

Theorem. Entropy is submodular, i.e. for all S,T ⊆V ,

H(S∪T)+H(S∩T)≤ H(S)+H(T).

Intuition. XS∩T is common to XS and XT , thus

H(S∩T)≤ I(XS; XT )

= H(XS)+H(XT )−H(XS, XT )

= H(S)+H(T)−H(S∪T).
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Shannon entropy of graphs

The Shannon entropy of D is

η(D) := suph(V ),

sup taken over all functions h : 2V →R s.t.

h(v)≤ 1 ∀v ∈V ,

h(S)≤ h(T) ∀S ⊆ T ⊆V ,

h(S∪T)+h(S∩T)≤ h(S)+h(T) ∀S,T ⊆V ,

h(Nin(v)∪v)= h(Nin(v)) ∀v ∈V .
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The pentagon
For the pentagon,

τ(C5)= 3, n−π(C5)= 2, n−π∗(C5)= 2.5.

11

2131

41

51

12

2232

42

52

Figure : Optimal fractional clique cover of C5
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Shannon entropy of the pentagon

Let h satisfy the constraints for C5, then

h(V )= h(2,3,4,5) {2,3,4,5} is a feedback vertex set,

h(V )= h(1,3,4) {1,3,4} is a feedback vertex set,

≤ h(1)+h(3,4) sub-additivity,

2h(V )≤ h(1)+h(3,4)+h(2,3,4,5) summation,

≤ h(1)+h(2,3,4)+h(3,4,5) submodularity,

= h(1)+h(2,4)+h(3,5) {2,4}= Nin(3) and {3,5}= Nin(4),

≤ 5 h(v)≤ 1 for all v ∈V .

Thus h(V )≤ 2.5.
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Further results based on graph entropy

Two extensions in (Christofides and Markström 11).

For odd cycles C2k+1 (k ≥ 2),

sup
q≥2

g(C2k+1, q)= η(C2k+1)= k+ 1
2
< τ(C2k+1)= k+1.

For their complements,

sup
q≥2

g(C2k+1, q)= η(C2k+1)= 2k−1− 1
k
< τ(C2k+1)= 2k−1.

And that’s it!
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Other results on the guessing number

Using non-Shannon inequalities (Baber, Christofides, Dang, Riis,
Vaughan 14)

Guessing graph (G + Riis 11): relation to coding theory, extension
to signed interaction graphs in (G + Richard + Riis 15)

Approach based on closure solvability: links with matroid theory
and secret sharing (G 13, G 14)

System reduction and linear network coding solvability (G +
Richard + Fanchon, 15+)
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