
RANK METRIC DECODER ARCHITECTURES FOR NONCOHERENT ERROR CONTROL
IN RANDOM NETWORK CODING

Ning Chen, Maximilien Gadouleau, and Zhiyuan Yan

Department of Electrical and Computer Engineering, Bethlehem, PA, 18015
E-mail: {nic6,magc,yan} @lehigh.edu

127

ABSTRACT

While random network coding has proved to be a powerful tool
for disseminating information in networks, it is highly suscep­
tible to errors caused by various sources. Recently, constant­
dimension codes (CDCs), especially Kotter-Kschischang
(KK) codes, have been proposed for error control in random
network coding. It has been shown that KK codes can be
constructed from Gabidulin codes, an important class of rank
metric codes used in storage and cryptography. Although rank
metric decoders have been proposed for both Gabidulin and
KK codes, it is not clear whether such decoders are feasible
and suitable for hardware implementations. In this paper, we
propose novel decoder architectures for both codes. The syn­
thesis results of our decoder architectures for Gabidulin and
KK codes over small fields and with limited error-correcting
capabilities not only are affordable, but also achieve high
throughput.

1. INTRODUCTION

While random network coding has proved to be a powerful
tool for disseminating information in networks, it is highly
susceptible to errors caused by various sources such as noise,
malicious or malfunctioning nodes, or insufficient min-cut [1].
Thus, error control for random network coding is critical and
has received growing attention recently. Nearly optimal Reed­
Solomon-like constant-dimension codes (CDCs) based on the
subspace metric, called Kotter-Kschischang (KK) codes, were
proposed in [1] for noncoherent error control in network cod­
ing. Later it was shown [2] that KK codes correspond to
"liftings" [2] of Gabidulin codes [3]. As Reed-Solomon codes
achieve the Singleton bound of Hamming distance, Gabidulin
codes are a class of maximum rank distance (MRD) codes,
which achieve the Singleton bound of rank distance. Due to the
connection between Gabidulin and KK codes, the decoding of
KK codes can be viewed as a generalized Gabidulin decoding,
which involves errors, erasures, and deviations.

This work was supported in part by Thales Communications, Inc. and in
part by a grant from the Commonwealth of Pennsylvania, Department of Com­
munity and Economic Development, through the Pennsylvania Infrastructure
Technology Alliance (PITA).

978-1-4244-4335-2/09/$25.00 ©2009 IEEE

Although the complexity of errors-only and generalized
decoding of Gabidulin codes was analyzed [4], there are no
hardware architectures for these decoders reported yet. Thus
it remains unknown whether these decoding algorithms are
feasible and suitable for hardware implementations. The fea­
sibility of the generalized Gabidulin decoding algorithm in
hardware implementations determines whether random net­
work coding, along with error control, can be readily applied
to certain applications.

In this paper, we propose decoder architectures for
Gabidulin and KK codes. We first propose a high-throughput
hardware architecture for errors-only Gabidulin decoding,
then extend it to decode KK codes. To evaluate the per­
formance of our decoder architectures, we implement our
decoder architecture for an (8,4) Gabidulin code over IF28,

whose code length is the longest given the field. We also
implement our decoder architecture for the corresponding KK
code of the (8,4) Gabidulin code over IF28, which can be used
in network coding with various packet lengths by Cartesian
product. The synthesis results of our decoder architectures
show that decoder architectures for Gabidulin and KK codes
over small fields and with limited error-correcting capabilities
not only are affordable, but also achieve high throughput. Our
decoder architectures are novel to the best of our knowledge.

2. PRELIMINARIES

2.1. Rank metric and Gabidulin Codes

The rank weight of a vector over IFq7n is defined as the max­
imal number of its coordinates that are linearly independent
over the base field IFa: Rank metric is the weight of vector
difference [3].

A Gabidulin code [3] is a linear (n, k) code over IFq7n

defined by a parity-check matrix

h[O] h[O] h[O]
0 I n-I

h[l] h[l] h[l]

H==
0 I n-I

h[n-k-I] h[n-k-I] h[n-k-I]
0 I n-I

where h o, hI, ... ,hn- I E IFq7n are linearly independent over

SiPS 2009

IFq and [i] denotes qi. Since IFq'Tn is an m-dimensional vector
space over IFq , we always have n ~ m. The minimum rank
distance of a Gabidulin code is d == n - k +1 and all Gabidulin
codes are MRD codes.

The decoding process of Gabidulin codes includes five ma­
jor steps: syndrome computation, key equation solver based
on a modified Berlekamp-Massey algorithm (BMA) [5], find­
ing the root space, finding the error locators by Gabidulin's
algorithm [3], and finding error locations. Note that all poly­
nomials involved in the decoding process have only non-zero
terms with degrees [j], and such polynomials are called lin­
earized polynomials. The greatest value of j of non-zero terms
of a linearized polynomial is defined as its q-degree.

The data flow of a Gabidulin decoder is given in Fig­
ure 1. As in Reed-Solomon decoding, we can compute syn­
dromes for Gabidulin codes as S == (So, Sl, ... ,Sd-2) ~

H r for any received vector r . Then the syndrome polynomial

S(x) == L~:~ Sjx[j] can be used to solve the key equation

u(x) Q9 S(x) == w(x) mod x[d-l], where u(x) is the error
span polynomial and Q9 denotes the symbolic product of two
linearized polynomials: a(x) Q9 b(x) == a(b(x)). After solving
the key equation by the BMA, up to t == l(d - 1)/2J error
values Ej's can be obtained by computing a basis Eo, E 1 , ...

for the root space of a(x) using the methods in [6, 7]. Then
we can find the error locators Xj's corresponding to E, 's by
solving a system of equations

proved [2] that the subspace distance [1] ds((X), (Y)) ==
2 rank[L T---:X] - JL - 8 where JL == n - lUI and (X) ando E
(Y) are subspaces spanned by rows of X and Y, respectively.
Now the decoding problem to minimize the subspace distance
becomes a problem to minimize the rank distance.

The generalized rank decoding finds an error word e ==
arg mineET-C rank] ~ iJ]. We can expand e as a summa­
tion of products of column and row vectors such that e ==
L;==~ LjEj. Each term LjEj is called either an erasure, if
L j is known, or a deviation, if E j is known, or an error, if
neither L j nor E j is known. In this general decoding problem,

L has JL columns from t. and E has 8 rows from E. Sim­
ilar to Hamming weight decoding, given a Gabidulin code
of minimum distance d, the corresponding KK code is able
to correct E errors, JL erasures, and 8 deviations as long as if
2E + JL + 8 < d.

With (r, t.,E), the general Gabidulin decoding algorithm
in [2, Fig. 1] can be used to decode the KK code. The data
flow of a KK decoder is given in Figure 2. Like interpolation
in errors-and-erasures RS decoding, the general Gabidulin
decoding uses minpoly({3) to compute a minimum linearized
polynomial, which satisfies two conditions: the elements of {3
are its roots and its q-degree is minimal.

3. ARCHITECTURE FOR GABIDULIN DECODING

where T is the number of errors. After solving (1) using
Gabidulin's algorithm, the error locations Lj's are revealed
from X j 's by solving

l == 0,1, ... ,d - 2 (1)
In this section, we propose a novel decoder architecture for
Gabidulin codes. We describe the key features of our decoder
architecture below. In most practical applications, data are
stored and transmitted in binary formats. Henceforth in this
paper we assume q == 2.

3.1. Finite Field Arithmetic
n-l

X j == L Lj,khi, j == 0,1, ... ,t - 1. (2)
i=O

2.2. KK Codes

By lifting construction [2], KK codes can be constructed from
MRD codes. Lifting can also be seen as a generalization of the
standard approach to random network coding, which transmits
matrices in the form X == [/ I x], where X E IF~XM, X E

IF~ x"", and m == M - n. Hence by adding the constraint that
x is the row expansion of codewords from a Gabidulin code C
over IFq'Tn, error control is enabled in network coding.

Let the received matrix be Y == [.Ii I y], where .Ii E

IF~xn and y E IF~xm. In [2], the matrix Y is first turned
into a reduced row-echelon (RRE) form. Let UC denote the
column positions of leading entries in each row of RRE(Y)
and U == {O, 1, ... ,n - I} \ UC. Let /u c denote the columns
of I n in UC. Then the RRE form is expanded into y- ==
[I~c J

8
] RRE(Y) = [In+

O

LI i5 ;] where c5 = N -[UPt was

128

VLSI architectures for finite field arithmetic have been well
studied (see for example, [8, 9]). Finite field elements can be
represented by vectors using different bases: polynomial basis,
normal basis, and dual basis [8]. Under normal basis, squaring
is simply cyclic shifting to more significant bits, which makes
it very attractive in rank metric decoders since all polynomials
involved are linearized polynomials. It was pointed out in [4]
that using normal basis can facilitate the computation of sym­
bolic product. It was also suggested that solving (2) can be
trivial using normal basis.

There are additional savings due to normal basis. In
Gabidulin's algorithm [3] to solve (1), the major complex­
ity is for Ai,j == Ai-1,j - (Ai-l,j/Ai-l,i-l)[-l]Ai-l,i-l

and Qi,j == Qi-l,j - (Qi-l,j+l/Ai-1,i-l)[-1]Ai-1,i-l,

which requires divisions and finding square roots. Actu­
ally, when q == 2, they can be computed in an inversion-

less form Ai,j == Ai-1,j - Ai-l,jA~=~],i_l and Qi,j ==
Qi-l,j - Qi-l,j+lA~=~] i-I' which requires only finding
square roots. Similar t~ squaring, finding square root in

Synd rome s

Fig. 1. Data flow of a Gabidulin decoder

Fig. 2. Data flow of a KK decoder

normal basis is just cyclic shifting in a reverse direction. Thus
using normal basis also reduces the complexity of Gabidulin's
algorithm. If a normal basis of JF2m is used as hi's and n = m,
H becomes a cyclic matrix and syndrome computation be­
comes part of a cyclic convolution of (ho, hI, " " hm-d and
r , for which fast algorithms are available , and are favorable
when m is large.

There are serial and parallel architectures for normal basis
finite field multipliers. To achieve high throughput in our de­
coder, we consider only parallel architectures. The complexity
of a normal basis, CN , is defined as the number of terms aibi
in computing a bit of c = ab, where ai's and bi's are the bits
of a and b, respectively. In this paper, we focus on the field
JF28 generated by x8 + x 7 + x5 + x3 + 1, on which CN is
minimized to 21 [8]. Most normal basis multipliers are based
on the Massey-Omura (MO) architecture. According to [9], a
parallel MO multiplier needs m 2 = 64 AND gates and at most
m(CN + m - 2)/2 = 108 XOR gates. Using the common
subexpression elimination algorithm from [10], we reduce the
number of XOR gates to 88 while maintain the same critical
path delay (CPD) as that of one AND gate and five XOR gates.

Since squaring is almost free, an efficient method to get
the inverse of (3 is to find (3 - 1 = (32

m
-2 = (32(34 . .. based on

multipliers. Division is simply the combination of inversion
and multiplication .

3.2. BMA Architectures

The modified BMA for rank metric codes in [5] is similar to
the BMA for Reed-Solomon codes except that polynomial
multiplications are replaced by symbolic products.

The BMA in [5] requires finite field divisions, which are
more time-consuming than other arithmetic operations. We
first propose an inversionless variant in Algorithm 1, which is
more suitable for hardware implementation.

Algorithm 1. i BMA

Input: Syndromes S
Output: A(x)

129

1. Initialize as follows: A(0) (x) = B(O)(x) = x, r eO) = 1,
and L = O.

2. For r = 0,1 , . . . , 2t - 1,

(a) Compute the discrepancy s; = l:~=o A;r)sY2j •

(b) If 6. r = 0, then go to (e).
(c) Modify the connection polynomial: A(r+I)(x) =

(r(r) [I}A(r)(x) - 6.r x [I} Q9 B (r)(x) .

(d) If 2L > r, go to (e). Otherwise, L = r + 1 - L,
r (r+l) = 6.n and B (r)(x) = A(r)(x) . Go to (a).

(e) Set r (r +l) = (r(r) [I} and B (r+ I)(x) = x[1 } Q9

B (r)(x) .

To further increase the throughput, more regular architec­
tures are necessary for shorter CPD. Following the approaches
in [11], we develop two architectures based on Algorithm 1.

In Algorithm 1, the critical path is in step 2(a). Note
that 6.r is the rth coefficient of the discrepancy polynomial
6.(r)(x) = A(r)(x) Q9 S(x). By using e (r)(x) = B (r) (x) Q9

S(x) , 6. (r +l) (x) can be computed as

6. (r+I) (x) = A(r+ l) (x) Q9 S(x)

= ((r (r) [I}A(r)(x) - 6.r X[I} Q9 B (r)(x» Q9 S(x)

= (r (r) [I}6.(r)(x) - 6.rx [l] Q9 e (r)(x)

which has the same CPD as step 2(c). This reformulation
leads to a more regular architecture in Algorithm 2, which
is analogous to the riBM architecture in [11]. Compared to
Algorithm 1, its control flow is also simpler.

Algorithm 2. r iBMA

Input: Syndromes S
Output: A(x)

1. Initialize as follows: A(0) (x) = B (O)(x) = x, r eO) = 1,
6.(O)(x) = e (O)(x) = l:;~~1 SiX[i), k = O.

2. For r = 0,1 , ... , 2t - 1,

(a) Modify the connection polynomial: A(r+ l) (x) =

r (r) A(r)(x) - 6.6r)B (r)(x);

(b) Compute the discrepancy polynomial: ~ (r+ 1) (x) ==
r(r)~(r)(x) - ~6r)8(r)(x);

(c) Set k == k + 1;

(d) If ~6r) i- 0 and k > 0, set k == -k, r(r+1)

~6r),B(r)(x) == A(r)(x),and8(r)(x) == ~(r)(x);

(e) Set~(r+1)(x) == L;~~2 ~~~~l)x[i], e(r+1)(x) ==
",,2t-2 8 (r) [i].
L...ti=O i+1 X ,

(f) Set r(r+1) == (r(r)) [1], B(r+1) (X) == X[l] Q9

B(r) (X), and 8(r+1) (x) == X[l] Q9 8(r+1) (x).

Given the similarities between steps 2(a) and 2(b), A(x)
and ~ (x) can be combined together into one polynomial Li(x),
which is more regular. Similarly, B(x) and 8(x) can be com­
bined into one polynomial e(x). In Algorithm 3 we have the
RiBMA architecture, which is closely related to the RiBM
architecture in [11].

Algorithm 3. RiBMA

Input: Syndromes S
Output: A(x)

1. Initialize as follows: Li(O) (x) == e(O)(x) == L;~~l SiX[i],

r(O) == 1, Li~~) == e~~) == 1, and k == O.
2. For r == 0, 1, ... , 2t - 1,

(a) Modify the combined polynomial: Li(r+1)(x) ==
r (r)Li (r)(x) - Li6r)e(r)(X) ;

(b) Set k == k + 1;

(c) If Li6r) i- 0 and k > 0, set k == -k, r(r+1)

Li6r), and e(r)(x) == Li(r) (x);

(d) Set Li(r+1) (x) == L;~~l Li~~~l)x[i], e(r)(x)

L;~~l e~~lX[i];
(e) Set r(r+1) == (r(r))[1] and e(r+1) (x) == x[l] Q9

e(r)(x).

3. Set A(x) == L~=o Li~~ix[i].

3.3. Decoding Failure

A complete decoder declares decoding failure when no valid
codeword is found within the decoding radius of the received
word. To the best of our knowledge, decoding failures of
Gabidulin and KK codes were not discussed in previous works.
Similar to Reed-Solomon decoding algorithms, a rank decoder
can return decoding failure when the roots of the error span
polynomial A(x) are not unique. That is, the root space of
A(x) has dimensions less than the q-degree of A(x).

Note that this applies to both Gabidulin and KK decoders.
For KK decoders, another condition to declare decoding failure
is when the total number of erasures and deviations exceeds
2t.

130

4. ARCHITECTURE FOR KK CODES

4.1. Left-RRE Form

We first define a left-RRE form for matrices. Given a matrix
Y == [A I y],A E F~XN,y E lF~xm, the matrix Y is in

left-RRE form as long as A is in RRE form. Compared with
the RRE form, it puts no constraints on the right part even
when A is not full-rank. Obviously the left-RRE form of a
matrix may be not unique.

Now we prove that it is enough to use left-RRE forms
instead ofRRE forms in decoding KK codes. Given Y == [A I
y] and RRE(A) == RA, the product RY == [~ ~,] is in

left-RRE form. It follows y' == [1uc 0]RY == [1+L1~ ~']o 1(5 0 E'
has the same row space as Y. With a similar approach as in [2,

Appendix C], we can prove rank[Xy] == rank[L T'-:-'~] +n- JL.
o E

Hence the subspace distance is given by ds((X), (Y)) ==
2 rank[~] - rankX - rank Y == 2 rank[L T'-:-'~] - JL ­

o E
6. Thus the subspace decoding problem is equivalent to the

A AI
generalized Gabidulin decoding problem with (r ', L, E).

By using the left-RRE forms instead of RRE forms, we
reduce the complexity of reduction slightly. More important,
the reduction for left-RRE forms is completely determined by
the left part of Y, which greatly simplifies hardware imple­
mentation.

4.2. KK Codes Lifted from Cartesian Gabidulin Codes

The left-RRE form also considerably simplifies the decoding
of KK codes that are lifted from Cartesian Gabidulin codes.

In network practice, the packet length is very long and m
is much larger than n. In such cases, the decoding complexity
of KK codes is prohibitive due to the huge field size of IF2m •

A low-complexity approach in [2] suggested that instead of
using a single long Gabidulin code, the Cartesian product of
many short Gabidulin codes with the same distance can be
used to construct KK codes for long packets.

Since the reduction in our left-RRE approach is purely
determined by A, decoding [A I Yo I Y1 I ... I YZ-1] can
be divided into small decoding problems whose inputs are

[A I Yo], [A I Yd,···, [A I Yz-d· In this way, a small
decoder for IFqn can decode packets with lengths as (l + l)n.

For KK codes that are lifted from Cartesian Gabidulin
codes, we can perform decoding in a serial manner with only
one decoder, or in a semiparallel way with more decoders,
or even in a fully parallel fashion. It is a tradeoff between
cost/area/power and throughput.

4.3. Gaussian Elimination

We first show that finding the root space and minimum lin­
earized polynomials can be done by Gaussian elimination.

According to [2], the complexity between the probabilistic
algorithm in [7] and Berlekamp's deterministic method [6] is

small for q == 2. So the deterministic method is preferred since
it is much easier to implement.

Berlekamp's deterministic method first evaluates the poly­
nomial r(x) on a basis of the field (ao, al, ... ,am-I) such
that Vi == r(ai), i == 0,1, ... ,m - 1. Then it expands v/s in
the base field as columns of an m x m matrix V and finds
linearly independent roots z such that V z == O. Using the
representation based on (ao, aI, ... ,am-I), the roots z are
also the roots of the given polynomial. Finding z is to obtain
the linear dependent combinations of the columns of V, which
can be done by Gaussian elimination.

Minimum linearized polynomials can be computed by solv­
ing systems of linear equations. Given roots {3o, {31, ... , {3k-l,

the polynomial x[k] + L7~OI aix[i] satisfies

Table 1. Worst-Case Decoding Latency
Gabidulin KK

RRE - n(n+1)/2+n
Syndrome n n

AU(X) - 2(d-1)+mp,
aD(x) - 2(d - 1) + m8

SDU(X) - 2(d - 1)
BMA 2t 2t

SFD(X) - d-1
(3 - 2(d-1)+mE

au(x) - 2(d-1)+mE
a(x) - 2(d -1)

root space m(m + 1)/2 m(m + 1)/2
error locator 2t+mt 2T+mT
error word t T

Total (n = m) n(n + 3)/2 + (m + 5)t n(n + 3) + (4m + 30)t

4.4. Latency Analysis

We analyze the worst-case decoding latencies of our decoder
architectures, in terms of clock cycles, in Table 1.

Note that we assume that the coefficient of the highest degree
term is one. Thus it can be solved by Gaussian elimination.

Furthermore, Gabidulin's algorithm is essentially a smart
way of Gaussian elimination, which takes advantage of the
properties of the matrix. So Gaussian elimination appears in
most steps of the decoding process, including reduction for
the RRE form, finding minimum linearized polynomials, find­
ing the root space, and Gabidulin's algorithm. The reduction
and finding the root space are Gaussian eliminations on ma­
trices over IFq, while linearized interpolation and Gabidulin's
algorithm operate on matrices over IFq7n •

For high-throughput implementations, we adopt the pivot­
ing architecture from [12]. It was developed for non-singular
matrices over IF2. It always keeps the pivot element on the
top-left location of the matrix, by cyclically shifting the rows
and columns. To apply it to singular matrices, which appear in
the reduction for the RRE form and finding the root space, we
adapt the architecture to detect singularity. Our architecture
is also flexible about matrix sizes, which are determined by
the varying numbers of errors, erasures, and deviations. Elimi­
nations over IFq7n require divisions. By cross-multiplications,
we can avoid divisions in Gaussian elimination; Divisions are
used only when the row is reduced to have only one non-zero
element. In Gabidulin's algorithm, the matrix is first reduced
to a triangular form. Then it performs a backward elimination
after getting each coefficient. Hence we introduce a backward
pivoting scheme, where the pivot element is always at the
bottom-right corner.

5. IMPLEMENTATION RESULTS

We implement our decoder architecture in Verilog for an (8, 4)
Gabidulin code, which can correct up to two errors. We also
implement our decoder architecture for the corresponding KK
code, which can correct E errors, J-j erasures, and 8 deviations
as long as 2E + J-j+ 8 < 5. Our designs are synthesized us­
ing Cadence RTL Compiler 7.1 and MOSIS SCMOS TSMC
0.18 IJm standard cell library [13]. The synthesis results are
given in Table 2. The total area in Table 2 includes both cell
area and estimated net area, and the total power in Table 2
includes both leakage and estimated dynamic power. All esti­
mation are made by the synthesis tool. In our calculation of
throughput, we consider all input bits. Each received vector of

As in [12], the latency of Gaussian elimination for the
left-RRE form is at most n(n + 1)/2 cycles. Additionally
it takes at most n cycles more to extract t. out of the left­
RRE form. Similarly, the latency of finding the root space is
at most m(m + 1)/2. For minimum linearized polynomials,
Gaussian elimination always works on non-singular matrices
of size at most d - 1. Hence it needs at most d - 1 cycles for
elimination. For each coefficient, it takes m cycles to perform
a division. The backward pivoting scheme also needs d - 1
cycles. Hence it needs 2(d - 1) + mu, 2(d - 1) + m8, and
2(d-l) +mE for AU(X), O"D(X), and O"u(x), respectively. The
latency of Gabidulin's algorithm can be computed similarly.
The 2t syndromes can be computed by 2t sets of multiply­
and-accumulators in n cycles. Note that the computations of
S(x), AU(X), and O"D(X) can be done concurrently. For our
(8, 4) codes, the longest latency of them is no more than 2(d ­
1) + mu + m8. The latency of RiBMA is 2t for 2t iterations.
The latency of a symbolic product a(x) Q9 b(x) is determined
by the q-degree of a(x). When computing SDU(X), we are
concerned about only the terms of q-degree less than d - 1
because only those are meaningful for the key equation. For
computing SPD(X), the result of O"D(X) Q9 S(x) in SDU(X)
can be reused, so it needs only one symbolic product.

{3 [k]
k-I

{36k- I]
ao

{3ik- I] al

{3[k-I] ak-I
k-I{3 [O] (3[I]

k-I k-I

131

the (8,4) Gabidulin code has 64 bits and that of the (8,4) KK
code has 128 bits. The gate count of our generalized decoder is
close to that of the (255,239) Reed-Solomon decoder in [14],
which is 115,500. Although their code lengths are quite differ­
ent, both codes are the longest in each class of codes. So, for
Gabidulin and KK codes over small fields, which have limited
error-correcting capabilities, their hardware implementations
are feasible. The area and power of decoder architectures in Ta­
ble 2 are affordable except for applications with very stringent
area and power requirements.

Table 2. Synthesis results of decoders for (8,4) Gabidulin and
KK codes over IF28

Gabidulin KK
Gates 22014 96636

Cell 0.551 2.421
Area (mm") Net 0.231 1.110

Total 0.782 3.531
CPD (ns) 5.125 5.144

Leakage 0.001 0.005
Power (mW) Dynamic 126.816 483.446

Total 126.817 483.451
Latency (cycles) 70 212

Throughput (Mbit/s) 178 117

For practical network applications, the packet size is large.
For example, for a packet size of 512 bytes, we can use a
KK code that is based on Cartesian product of 511 length-8
Gabidulin codes. For higher throughput, more decoders can
be used to decode in parallel. We list the gate counts and
throughput of serial and factor-7 parallel schemes in Table 3.

Table 3. Performance of KK decoders for 512-byte packets
Serial 7-Parallel

Gates 96636 676452
Area (mrrr) 3.531 24.717

Power (mW) 483.451 3384.157
Latency (cycles) 108332 15476

Throughput (Mbit/s) 59 412

Although the area and power shown in Tables 2 and 3 are
affordable, they are for short Gabidulin and KK codes over a
small field. The (8,4) Gabidulin and KK codes can correct
at most two errors. Although the (8,4) KK decoder can be
used for long packets by Cartesian product, the Cartesian
product of (8,4) Gabidulin codes and its corresponding CDC
also can correct at most two errors. When we increase the
error correction capabilities of both Gabidulin and KK codes,
longer codes are needed and thus larger fields are required.
The large field size implies a higher complexity for finite
field arithmetic. It remains to be seen whether the decoder
architectures continue to be affordable for longer codes over
larger fields, and this will be the subject of our future work.

132

6. REFERENCES

[1] R. Kauer and F. R. Kschischang, "Coding for errors and
erasures in random network coding," IEEE Trans. Inf
Theory, vol. 54, no. 8, pp. 3579-3591, Aug. 2008.

[2] D. Silva, F. R. Kschischang, and R. Kauer, "A rank­
metric approach to error control in random network cod­
ing," IEEE Trans. Inf Theory, vol. 54, no. 9, pp. 3951­
3967, Sep. 2008.

[3] E. M. Gabidulin, "Theory of codes with maximum rank
distance," Probl. Inf Transm., vol. 21, no. 1, pp. 1-12,
Jan.-Mar. 1985.

[4] M. Gadouleau and Z. Yan, "Complexity of decoding
Gabidulin codes," in Proc. 42nd Ann. Conf. Information
Sciences and Systems (CISS'08), Princeton, NJ, Mar. 19­
21, 2008, pp. 1081-1085.

[5] G. Richter and S. Plass, "Error and erasure decoding
of rank-codes with a modified Berlekamp-Massey algo­
rithm," in Proc. 5th Int. ITG Conf Source and Channel
Coding (SCC'04), Erlangen, Germany, Jan. 2004, pp.
249-256.

[6] E. R. Berlekamp, Algebraic Coding Theory. New York,
NY: McGraw-Hill, 1968.

[7] V. Skachek and R. M. Roth, "Probabilistic algorithm
for finding roots of linearized polynomials," Des. Codes
Cryptog r. , vol. 46, no. 1, pp. 17-23, Jan. 2008.

[8] E. D. Mastrovito, "VLSI architectures for computations
in Galois fields," Ph.D. dissertation, Linkoping Univ.,
Linkoping, Sweden, 1991.

[9] A. Reyhani-Masoleh and M. A. Hasan, "A new construc­
tion of Massey-Omura parallel multiplier over GF (2m) ,"

IEEE Trans. Comput., vol. 51, no. 5, pp. 511-520, May
2002.

[10] N. Chen and Z. Yan, "Cyclotomic FFTs with reduced ad­
ditive complexities based on a novel common subexpres­
sian elimination algorithm," IEEE Trans. Signal Process.,
vol. 57, no. 3, pp. 1010-1020, Mar. 2009.

[11] D. V. Sarwate and N. R. Shanbhag, "High-speed archi­
tectures for Reed-Solomon decoders," IEEE Trans. VLSI
Syst., vol. 9, no. 5, pp. 641-655, Oct. 200l.

[12] A. Bogdanov, M. C. Mertens, C. Paar, J. Pelzl, and
A. Rupp, "A parallel hardware architecture for fast
Gaussian elimination over GF(2)," in Proc. 14th Ann.
IEEE Symp. Field-Programmable Custom Computing
Machines (FCCM'06), Napa Valley, CA, Apr. 24-26,
2006, pp. 237-248.

[13] J. E. Stine, J. Grad, I. Castellanos, J. Blank, V. Dave,
M. Prakash, N. Iliev, and N. Jachimiec, "A framework
for high-level synthesis of system-an-chip designs," in
Proc. IEEE Int. Conf. Microelectronic Systems Education
(MSE'05), Anaheim, CA, Jun. 12-13,2005, pp. 11-12.

[14] H. Lee, "High-speed VLSI architecture for parallel Reed­
Solomon decoder," IEEE Trans. VLSI Syst., vol. 11, no. 2,
pp. 288-294, Apr. 2003.

