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a b s t r a c t

In this paper, we introduce a new parameter of a code, referred to
as the remoteness, which can be viewed as a dual to the covering
radius. Indeed, the remoteness is the minimum radius needed for
a single ball to cover all codewords. After giving some general
results about the remoteness, we then focus on the remoteness of
permutation codes. We first derive upper and lower bounds on the
minimum cardinality of a code with a given remoteness. We then
study the remoteness of permutation groups. We show that the
remoteness of transitive groups can only take two values, and we
determine the remoteness of transitive groups of odd order. We
finally show that the problem of determining the remoteness of
a given transitive group is equivalent to determining the stability
number of a related graph.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Let X be a finite set of points and d be a metric on X which takes integral values. For any v ∈ X and
t ≥ 0, we refer to the set Bt(v) = {u ∈ X: d(u, v) ≤ t} as the ball of radius t centered at v. We denote
the minimum volume of a ball with radius t in X as Vmin

t and the corresponding maximum as Vmax
t .

Let C ⊆ X , C ≠ ∅ be a code, i.e. a set of points, which we will refer to as codewords. The maximum
distance between any two codewords in C is the diameter of C:

δ(C) = max
c,c′∈C

d(c, c ′),

while the minimum radius of a ball centered at a codeword needed to cover C is the radius of C:

ρ(C) = min
c∈C

max
c′∈C

d(c, c ′).
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It is well-known that the diameter and the radius are related byMacWilliams and Sloane [14, Chapter
6, Problem 10]

ρ(C) ≤ δ(C) ≤ 2ρ(C).

Another important parameter of a code C is its covering radius, defined as theminimum radius such
that the balls centered around the codewords cover the whole set X:

cr(C) = max
v∈X

min
c∈C

d(v, c).

For a thorough exposition of the covering radius, see [8].

2. Results for all metric spaces

Definition 1. For any code C ⊆ X , the remoteness of C is defined as the minimum radius of a ball that
covers the whole code:

r(C) = min
v∈X

max
c∈C

d(v, c).

For any code C , we have
δ(C)

2
≤ r(C) ≤ ρ(C).

Furthermore, r({v}) = 0 for all v ∈ X and r(X) = ρ(X).
Clearly, the maximum cardinality of a code with remoteness at most t is given by Vmax

t . We are
hence interested in theminimum cardinality of a code with remoteness at least t for t = 0, . . . , ρ(X),
which we denote asm(X, d, t) henceforth, or simply

m(X, t) = min
r(C)=t

|C |.

We have m(X, 0) = 1, m(X, t) = 2 for 1 ≤ t ≤


δ(X)

2


, and in general m(X, t) is a non-decreasing

function of t . The consideration above also shows that m(X, t) ≤ Vmax
t−1 + 1; however this bound is

usually very poor.
We now give a lower bound on the remoteness. Recall that an (n, r, k)-covering design is a family

of r-subsets (called blocks) of a set of size n, where each k-set is contained in at least one block [16].
We denote theminimum cardinality of an (n, r, k)-covering design as K(n, r, k). A table of the tightest
bounds on K(n, r, k) known so far is available at [15]. Denote themaximum remoteness of a codewith
cardinality k as r(k) = max{r(C): |C | = k}; thus r(k) = max{t:m(X, t) ≤ k}.

Proposition 1. For all v ∈ X, let B′

r(k)(v) be a set of Vmax
r(k) points containing Br(k)(v). Then the family

{B′

r(k)(v): v ∈ X} forms an (|X |, Vmax
r(k) , k)-covering design and

r(k) ≥ min{t: K(|X |, Vmax
t , k) ≤ |X |}.

Proof. By definition, for any code C of k codewords, there exists a point v such that C ⊆ Br(k)(v) ⊆

B′

r(k)(v). Therefore, the collection {B′

r(k)(v)} forms a covering design and K(|X |, Vmax
r(k) , k) ≤ |X |. �

For any code C , we denote the number of points at distance no more than t from all codewords as
µ(t, C). Remark that µ(t, C) > 0 if and only if t ≤ r(C). Then we have |µ(t − 1, C)| + |C | ≥ m(X, t)
for t ≤ ρ(X). This holds because for each element in µ(t − 1, C) we could choose a point at distance
at least t from it. Adding these points to C yields a set with remoteness at least t and cardinality at
most |µ(t − 1, C)| + |C |. Thus, m(X, t) can be viewed as a lower bound on the intersection of balls.

In general, the problem of remoteness can be viewed as a special case of strong domination in
graphs [13]. Recall that a strong dominating set (also referred to as total dominating set) in a graph
is a set of vertices C ⊆ V such that any vertex of the graph is adjacent to some element of C . The
following proposition is easily seen.

Proposition 2. For 0 ≤ t ≤ ρ(X), let Et = {uv: u, v ∈ X, d(u, v) ≥ t} and define the graph
Gt = (X, Et). Then r(C) ≥ t if and only if C is a strong dominating set of Gt .
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Since m(X, t) is the solution of a special set cover problem [10], we can apply the bounds derived
for the general case. We obtain [8]

n
n − Vmin

t−1 + 1
≤ m(X, t) ≤

n
n − Vmin

t−1 + 1
+

n
n − Vmax

t−1 + 1
ln(n − Vmin

t−1 + 1).

The lower bound is usually very poor, as we need Vmin
t−1 > n

2 + 1 to make it non-trivial. A code with
a cardinality no more than the upper bound can be obtained by using a greedy algorithm [17]. The
upper bound can be further refined by the techniques in [7].

The remoteness is closely related to the covering radius, as seen in Proposition 3 below.

Proposition 3. For any code C,

ρ(X) ≤ r(C) + cr(C) ≤ ρ(X) + δ(X).

Proof. The upper bound is trivial, we now prove the lower bound. It suffices to show that for any
point v ∈ X , there exists a codeword in C at distance at least ρ(X) − cr(C) from v. For any v, there
exists u such that d(u, v) ≥ ρ(X), and by definition of the covering radius there exists c ∈ C such that
d(u, c) ≤ cr(C). Hence the triangle inequality implies d(v, c) ≥ ρ(X) − cr(C). �

Note that the bounds in Proposition 3 can be tight. For instance, if C = X , then r(C)+cr(C) = ρ(X).
On the other hand, a pair of leaves in the star graph with at least 4 vertices satisfies r(C) = 1 = ρ(X),
while cr(C) = 2 = δ(X).

Denoting the minimum cardinality of a code with covering radius t as Mcr(X, t), Proposition 3
impliesm(X, t) ≤ Mcr(X, ρ(X) − t).

Furthermore, we say that the metric space (X, d) is balanced if ρ(X) = δ(X) and if for any v ∈ X ,
there exists v̄ ∈ X at distance ρ(X) such that

d(u, v) + d(u, v̄) = ρ(X)

for all u ∈ X . For instance the binary Hamming graphH(n, 2) (the n-dimensional hypercube) with the
shortest path distance is a balanced metric space, where v̄ = v + 1n, the all-ones vector.

Corollary 1. If X is balanced, then r(C) + cr(C) = ρ(X) for any code C ⊆ X. Therefore, m(X, t) =

Mcr(X, ρ(X) − t).

Proof. There exists v ∈ X such that d(v, c) ≥ cr(C) for all c ∈ C , with equality being reached for
some codeword in C . Then we have d(v̄, c) ≤ ρ(X) − cr(C) for all c ∈ C by the triangle inequality.
Hence r(C) ≤ ρ(X) − cr(C). �

3. Remoteness of permutation codes

We now consider X = Sn the symmetric group on the first n natural integers, where the distance
between two permutations is the Hamming distance: d(π, σ ) = |{i: iπ ≠ iσ }| for any π, σ ∈

Sn. Remark that the Hamming distance is invariant under left and right translation: d(π, σ ) =

d(τπ, τσ ) = d(πτ , στ) for all π, σ , τ ∈ Sn. Note that d(π, σ ) ∈ {0} ∪ {2, 3, . . . , n}. A permutation
π ∈ Sn can be represented in passive form as a word in {1, . . . , n}n with coordinates 1π, 2π, . . . , nπ .
We will also use the notation Jπ = {jπ : j ∈ J} for any set J ⊆ {1, . . . , n}.

Subsets of the symmetric group, referred to as permutation codes, have been intensively studied
recently (see the thorough survey in [5] and references therein). In particular, the covering radius of
permutation codes has been investigated in [6].

3.1. Preliminary results

First of all, let us consider the remoteness of any pair of permutations. If they are at distance 2,
then the remoteness is clearly 2. However, when the distance increases, the remoteness may vary
for pairs of permutations with the same distance. By translation, we only consider pairs of the form
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C = {(1), σ }, where (1) denotes the identity. The remoteness of C depends on the cycle structure
of σ , denoted as T1, T2, . . . , Tk ⊆ {1, . . . , n} of respective lengths l1, . . . , lk, where lc ≥ 2 andk

c=1 lc = d((1), σ ) = d and σ reduces to a cyclic permutation σc of Tc for all c . We are interested in
finding a permutation π ∈ Sn which minimizes max{d(π, (1)), d(π, σ )}, which we will refer to as a
minimal permutation. Let us first focus on the case where k = 1, i.e. σ is a cyclic permutation.

Lemma 1. If κ ∈ Sn is a cyclic permutation and π ∈ Sn \ C, then

d(π, (1)) + d(π, κ) ≥ n + 1.

Conversely, for all 2 ≤ e ≤ n− 1, there exists τe ∈ Sn such that d(τe, (1)) = e and d(τe, κ) = n+ 1− e.

Proof. It is clear that d(π, (1)) + d(π, κ) ≥ n for any π ∈ Sn by the triangle inequality. Suppose
π ∉ C satisfies d(π, (1))+d(π, κ) = n and let S = {j: jπ = j} be the set of indices on which π agrees
with the identity, and S̄ = {1, . . . , n} \ S be the set of indices on which π agrees with κ . Since π ∉ C ,
we have S̄ ∉ {∅, {1, . . . , n}} and hence there exists j in S̄κ ∩ S. Thus jπ = j and j = iκ = iπ for some
i ∈ S̄ and hence j = iwhich contradicts the fact that S and S̄ are disjoint.

Assuming κ is the standard cyclic permutation, jκ = j + 1 for j ≤ n − 1 and nκ = 1. Then define
τe as jτe = j for 1 ≤ j ≤ n − e, jτe = j + 1 for n − e + 1 ≤ e ≤ n − 1 and nτe = n − e + 1. It is easily
seen that τe satisfies the claim. �

Note that if π ∈ C = {(1), σ }, then d((1), π) + d(σ , π) = n. Hence Lemma 1 indicates that
we can either minimize the sum of distances between π and the pair of codewords (if π ∈ C) or try
to balance the distances (otherwise) with an additional penalty of 1 unit of distance. The strategy to
obtain a minimal permutation for the general case is hence to pay the minimal amount of penalties.
This amount is no more than one, and can even be zero under certain circumstances.

Proposition 4. Suppose d = d((1), σ ) is even, and that we can order the cycle lengths l1, . . . , lk such
that there exists s for which

s
c=1 lc =

k
c=s+1 lc =

d
2 . Then r(C) =

d
2 . Otherwise, r(C) =

 d
2


+1. Thus

m(Sn, t) = 2 for 2 ≤ t ≤
 n

2


+ 1.

Proof. First of all, we have r(C) ≥
 d

2


.We nowprove that there exists aminimal permutationπ such

that Tcπ = Tc for all 1 ≤ c ≤ k. Suppose the contrary, i.e. for any minimal permutation τ , there exists
a nonempty set of indices c for which Tc ≠ Tcτ . For all such c , denote the elements of Tc mapped
outside of Tc as {tc,1, . . . , tc,mc } and the elements outside of Tc mapped into Tc as {sc,1, . . . , sc,mc }.
Remark that tc,jτ ∉ {tc,j, tc,jσ } and sc,jτ ∉ {sc,j, sc,jσ } for all c and j. Construct the permutation τ ′ as
sc,jτ ′

= tc,jτ , tc,jτ ′
= sc,jτ for all c, j and aτ ′

= aτ for any other a ∈ {1, . . . , n}. Then it is readily
checked that τ ′ is also minimal, while Tc = Tcτ for all c , which contradicts our hypothesis.

Therefore, π can be decomposed into permutations π1, . . . , πk of T1, . . . , Tk respectively. If the
assumptions of the first sentence are satisfied, then simply letπc be the identity for c ≤ s andπc = σc
for c ≥ s + 1, then it is clear that π is at distance d

2 from both codewords.
Otherwise, a penalty has to be paid, for if πc is the identity for c ∈ J and πc = σc for all c ∉ J

for some set of indices J ⊆ {1, . . . , k}, then d((1), π) =


c∈J lc ≠
d
2 (similarly for σ ) while

d((1), π) + d(σ , π) = d, and the maximum between the two distances is greater than d
2 . Let us

pay the penalty only once: let 1 ≤ s ≤ k such that
s−1

c=1 lc < d
2 while

s
c=1 lc > d

2 . Again, we let πc

be the identity for c ≤ s− 1 and πc = σc for c ≥ s+ 1. Denoting e =
s

c=1 lc −
 d

2


+ 1, we then let

πs =


σs if

s−1
c=1

lc =


d
2


− 1

(1) if
s

c=1

lc =


d
2


+ 1

τe otherwise, i.e. if 2 ≤ e ≤ ls − 1.

Then it is easy to check that max{d((1), π), d(σ , π)} ≤
 d

2


+ 1. �
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We are now interested in a refinement of the r(C) + cr(C) ≥ n bound.

Proposition 5. If C is neither a singleton nor the whole symmetric group Sn, then

r(C) + cr(C) ≥ n + 1.

Proof. First of all, some trivial cases have to be dealtwith. The statement is easily verified forn ≤ 3; let
us assume n ≥ 4. Then, if cr(C) = n either r(C) = 0 and hence C is a singleton or r(C)+cr(C) ≥ n+2.
Similarly if r(C) = n then either cr(C) = 0 hence C = Sn or r(C) + cr(C) ≥ n + 2.

Let us then assume that C is a code in Sn with cr(C) ≤ n − 1 and r(C) ≤ n − 1. Remark that for
any π ∈ Sn, we can construct a cyclic permutation κ at distance n from π as follows. Let us express
π in cycle decomposition: π = (1 a2 a3 · · ·) · · · (aj · · · an), then κ = (1 a3 · · · an−1 a2 a4 · · · an) if n is
even or κ = (1 a3 · · · an a2 a4 · · · an−1) if n is odd.

Therefore, for any π ∈ Sn, C does not contain the set of all cyclic permutations multiplied by π (as
such a set has remoteness n). There hence exists a cyclic permutation κ for which πκ ∉ C . Due to the
covering radius of C , there exists c ∈ C such that d(c, πκ) ≤ cr(C) and thus d(c, π) ≥ n + 1 − cr(C)
by Lemma 1 (for c ≠ πκ because πκ ∉ C and c ≠ π because d(c, π) ≥ n − cr(C) > 0). �

Equality in Proposition 5 is achieved bymany a code, e.g. any ball with radius r , with 2 ≤ r ≤ n−1.

3.2. Bounds

Let us derive a lower bound onm(Sn, t).

Proposition 6. For t ≤ n, we have

m(Sn, t) ≥


2n − t + 1
2(n − t + 1)


+ 1.

Proof. Let µ =


2n−t+1
2(n−t+1)


and let C = {c1, c2, . . . , cµ} be a code of µ permutations. We construct a

permutation π at Hamming distance at most t − 1 from all codewords in C recursively as follows. Let
I1 = ∅, and for all 1 ≤ j ≤ µ, letAj be a set of cardinality n−t+1 such thatAj∩Ij = ∅ andAjcj∩Ijπ = ∅;
then set aπ = acj for any a ∈ Aj and update Ij+1 = Ij ∪Aj. Finally, denote Aµ+1 = {1, . . . , n}\ Iµ+1 and
its elements as {a1, . . . , al} and {1, . . . , n} \ Iµ+1π = {b1, . . . , bl}; then let aiπ = bi for all 1 ≤ i ≤ l.

We first verify that Aj exists for all 1 ≤ j ≤ µ. This is done by recursion, where the initial step j = 1
is trivial. Assume it is true up to j − 1; We have

|Ijcj ∪ Ijπ | ≤ |Ijcj| + |Ijπ | = 2(j − 1)(n − t + 1) ≤ t − 1.

Therefore, there exists a set Bj of cardinality n− t+1which does not intersect Ijcj∪ Ijπ . Let Aj = Bjc−1
j ,

then |Aj| = n − t + 1, Aj ∩ Ij = ∅, and Ajcj ∩ Ijπ = ∅. Finally, Aµ+1 is well defined, for |Iµ+1| ≤ n.
Second, we verify that π is indeed a permutation by considering two distinct numbers 1 ≤ a <

b ≤ n. Either a, b ∈ Aj for some j and aπ = acj ≠ bcj = bπ ; or a ∈ Ai and b ∈ Aj for some i ≠ j and
hence bπ ∉ Aiπ , from which bπ ≠ aπ . �

Let us now design a code with high remoteness by using rows of a Latin square. Recall that a Latin
square of order n is an n×n array over {1, . . . , n} such that any element of {1, . . . , n} appears in each
row and each column [4, Chapter 6]. The cyclic Latin square has as first row the elements 1 to n in
increasing order, and each row is obtained from the previous one by a cyclic shift to the left. In other
words, the rows of the cyclic Latin square are the passive forms of the elements of the group generated
by the standard cyclic permutation.

Proposition 7. Let C be the first k rows of a Latin square of order n, then

r(C) ≥ n −

n
k


.
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Furthermore, if k ≡ 0 mod 2 and n ≡ 0 mod k and C consists of the first k rows of the cyclic Latin square
of order n, then r(C) ≥ n−

n
k + 1. We obtain m(t) ≤

n
n−t+1 if n− t + 1 |

n
2 and m(t) ≤

 n
n−t+1


+ 1 if

n − t + 1 - n
2 and t ≤ n − 1.

Proof. Let ci denote the i-th row of a Latin square. For any π ∈ Sn, we have
n

i=1 d(π, ci) ≥ n(k − 1)
and hence there exists cj such that d(π, cj) ≥

n(k−1)
k . This proves the first result. Now, let k ≡ 0 mod 2

and n ≡ 0 mod k and let C be the first k rows of the cyclic Latin square of order n. Suppose there exists
π ∈ Sn such that d(π, ci) ≤

n(k−1)
k for all 1 ≤ i ≤ k. By the argument above, there actually has to be

equality for all i, hence for all 1 ≤ j ≤ k, there exists ij such that jπ = jcij . Denoting the content of the
(i, j) cell of the Latin square as L(i, j) and ∆(i, j) = L(i, j) − i − j + 1 mod n, then ∆ is identically zero
on the cyclic Latin square. We have

0 =

n
j=1

∆(ij, j) ≡

n
z=1

z −
n
k

k
ij=1

ij −
n

j=1

j mod n ≡ −n
k + 1
2

mod n,

which contradicts the fact that k is even. Thus, r(C) ≥
n(k−1)

k + 1. �

A transversal in a Latin square of order n is a collection of n positions of the square comprising one
from each row and one from each column, such that the symbols in those positions are distinct. A
transversal can hence be viewed as a permutation π ∈ Sn at Hamming distance n − 1 from all rows.

Corollary 2. The set of rows of a Latin square has remoteness n− 1 if it has a transversal and remoteness
n otherwise. We obtain m(Sn, n − 1) ≤ n for all n, and if n is even then m(Sn, n) ≤ n.

For n odd, the case of the full remoteness is not covered by our constructions based on Latin
squares. However, we can add more codewords to a Latin square to reach a remoteness of n. For
n ≥ 5, [18] indicates that there exists a Latin square of order n (referred to as a confirmed bachelor)
which contains an entry through which no transversal passes.

Proposition 8. Let n ≥ 5 be odd and let C ⊆ Sn consist of the rows of a confirmed bachelor Latin square
of order n. Let D = {(2i − 1 2i): 1 ≤ i ≤

n−1
2 }, then r(C ∪ D) = n. Therefore, m(Sn, n) ≤

3n−1
2 .

Proof. By permutation of rows and columns, let us assume that the entry through which no
transversal passes is (n, n). Also, by renaming entries, we can assume that the first row of the
confirmed bachelor Latin square is the identity. If π ∈ Sn is not a transversal of that Latin square,
then there exists a row of the Latin square at distance n from it. Otherwise, π agrees with the identity
in exactly one position, say j ≤ n − 1: we have jπ = j and iπ ≠ i for i ≠ j. Then it is easily checked
that d(π, (2k − 1 2k)) = n, where j ∈ {2k − 1, 2k}. �

Now let us consider the cartesian product of two codes. Let C1, C2 be two codes in Sn1 and Sn2 ,
respectively. Their cartesian product C = C1 × C2 ⊆ Sn1+n2 is the set of permutations c = (c1, c2),
where ic = ic1 for 1 ≤ i ≤ n1 and ic = (i − n1)c2 + n1 for n1 + 1 ≤ i ≤ n2.

Proposition 9. For all C1, C2, we have

r(C1 × C2) = r(C1) + r(C2).

Proof. For all π = (π1, π2) ∈ Sn1+n2 and c ∈ C , we have d(π, c) = d(π1, c1) + d(π2, c2). Thus for
any π ∈ Sn1+n2 , there exists a codeword at distance at least r(C1) + r(C2) from π ; conversely, if π1
and π2 are minimal for C1 and C2 respectively then d(π, c) = r(C1) + r(C2). �

Corollary 3. If all codewords π ∈ C satisfy ilπ = jl for l = 1, . . . , k, then by translation we may assume
il = jl for l = 1, . . . , k; the remoteness is unaffected by restriction to {1, . . . , n} \ {i1, . . . , ik}.

The remoteness satisfies some inequalities analogous to the Singleton bound for the minimum
distance of codes.

Proposition 10. We have

m(Sn−1, t − 2) ≤ m(Sn, t) ≤ m(Sn−1, t).
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Proof. For any π ∈ Sn, we define the permutation π1 ∈ Sn−1 as iπ1 = iπ for all i ∈ {1, . . . , n − 1} \

{nπ−1
}, and (nπ−1)π1 = nπ if nπ−1

≠ n. Conversely, any permutation in Sn−1 can be expressed as
π1 for some π ∈ Sn fixing n.

We first prove the upper bound. Let C1 ⊆ Sn−1 be a code with remoteness at least t and cardinality
m(Sn−1, t) and let C = {c ∈ Sn: c1 ∈ C1}. We shall prove that r(C) ≥ t by considering any
permutation π ∈ Sn. If π fixes n, then d(π, c) = d(π1, c1) for all c and hence there exists c such
that d(π, c) ≥ t . Otherwise, there exists c such that d(π, c) ≥ 1 + d(π1, c1) ≥ t + 1. Thus
m(Sn, t) ≤ |C | = |C1| = m(Sn−1, t).

We now prove the lower bound. Let C ⊆ Sn be a code with remoteness t and cardinality m(Sn, t).
For any π1 ∈ Sn−1, we have d(π1, c1) ≥ d(π, c) − 2. Let C = {c1: c ∈ C}, then C has remoteness at
least t − 2 and hencem(Sn−1, t − 2) ≤ |C1| ≤ |C | = m(Sn, t). �

By using the passive form, a permutation in Sn can be viewed as a word in the Hamming graph
H(n, n). It immediately follows that if C is a permutation code, then r(Sn, C) ≥ r(H(n, n), C). On the
other hand, some codewords can be added to C to produce a remote code for the Hamming graph.

Proposition 11. We have

m(H(n, n), n) ≤ n + m(Sn, n).

Proof. Let C ⊆ Sn be a permutation code with remoteness n and let D ⊆ H(n, n) be defined as
D = {da = (a, a, . . . , a): 1 ≤ a ≤ n}. Viewing the permutations in C in passive form as words in
H(n, n), we shall prove that r(C∪D) = n. Let v ∈ H(n, n); there are two cases. First, if v also represents
a permutation, then there exists a codeword in C at distance n from v. Otherwise, a coordinate value
a is not on any coordinate of v, and d(v, da) = n. �

4. Remoteness of permutation groups

4.1. Groups generated by one element

Let us now consider the remoteness of a group G generated by one element g . In view of
Corollary 3, we assume that g has no fixed points. Let T1, . . . , Tk of lengths l1, . . . , lk denote the cycle
decomposition of g . Then it is easily seen that r(G) ≥ n − k and that r(G) = n − k if and only if there
is a permutation π ∈ Sn at distance n − k from all the elements of G.

Theorem 1. If g is an even permutation, then r(⟨g⟩) = n − k; if g is an odd permutation, then r(⟨g⟩)
= n − k + 1.

Proof. We first prove the following claim: Let κ be a cyclic permutation on {0, . . . , 2m − 1}, then
there exist π0, π1 ∈ S2m such that

d(π0, κ
a) =


2m − 2 if a is even
2m if a is odd,

d(π1, κ
a) =


2m if a is even
2m − 2 if a is odd.

We assume that κ is the standard cyclic permutation, i.e. iκa
= i + a (all operations are modulo

2m). We differentiate on the parity of m. If m is even, then let iπ0 = 3i and iπ1 = 3i + 1 for all
0 ≤ i ≤ 2m − 1. We prove that π0 is indeed a permutation at distance 2m − 2 from all even powers
of κ and at distance 2m from all odd powers. First, π0 is a permutation since 3i = 3j implies i = j.
Second, iκa

= iπ0 if and only if a = 2i: all even values of a occur twice. The proof for π1 is similar.
If m is odd, let iπ0 = i + 2

 i
2


and iπ1 = iπ0 + 1 for all i. It is easily checked that π0 and π1 are

permutations satisfying the claims.
We now prove that r(G) = n − k if g is even and r(G) ≤ n − k + 1 if g is odd. Let g be an even

permutation, i.e. there is an even number of even cycle lengths, say 2s. Let us construct a permutation
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π such that d(π, ga) = n − k for all 0 ≤ a ≤ |G| − 1. Let π reduce to π0 for the first s cycles of
even lengths, to π1 for the other s cycles of even lengths, and let π reduce to a transversal of the cyclic
Latin square for all the k − 2s odd cycles. Since ga reduces to κλ, where κ is a cyclic permutation and
λ ≡ a mod lc , on Tc for all 1 ≤ c ≤ k, we have

d(π, ga) =

s
c=1

d(π0, κ
a) +

2s
c=s+1

d(π1, κ
a) +

k
c=2s+1

(lc − 1) =

k
c=1

lc − k = n − k.

If g is an odd permutation, then without loss l1 is even and the restriction g ′ of g on T2 ∪ · · · ∪ Tk is
even. Therefore, there exists π ′ at distance n − l1 − k + 1 from all the powers of g ′, and by extension
there exists π ∈ Sn at distance at most n − k + 1 from all powers of g .

Let us finally prove that when g is an even permutation, then there is no permutation π such that
d(π, g i) = n− k for all 0 ≤ i ≤ |G| − 1. We show it by contradiction. First, by an argument similar to
that for Proposition 4, we can show that there is always a minimal permutation π which restricts to
a permutation on all Tc ’s. Let χ(i, j) = 1 if jg i

= jπ and χ(i, j) = 0 otherwise. Thus

n−1
j=0

|G|−1
i=0

iχ(i, j) = k
|G|−1
i=0

i = k|G|
|G| − 1

2
. (1)

For any cycle Tc of length lc , denote mc =
|G|

lc
. For all j ∈ Tc , we can express {i: jπ = jg i

} as
{i′ + alc : 0 ≤ a ≤ mc − 1} for some i′ with 0 ≤ i′ ≤ lc − 1. We obtain

n−1
j=0

|G|−1
i=0

iχ(i, j) =

n−1
j=0

mc−1
a=0

(i′ + alc)

=

n−1
j=0

i′mc +

n−1
j=0

|G|
mc − 1

2

=

n−1
j=0

i′mc + k
|G|

2

2
− n

|G|

2
. (2)

Combining (1) and (2), we obtain

n−1
j=0

i′mc = |G|
n − k
2

. (3)

On the other hand, for all j ∈ Tc , denote j′ = j −
c−1

b=1 lb (so that j′ ranges from 0 to lc − 1) and
Zj = (j′ + i′) mod lc = jπ −

c−1
b=1 lb. Note that Zj also ranges from 0 to lc − 1. Thus,

n−1
j=0

mcZj =

n
j=0

mc j′ =

k
c=1

mc

lc−1
j′=0

j′ =

k
c=1

|G|
lc − 1

2
= |G|

n − k
2

. (4)

Finally, combining (3) and (4) yields

|G|
n − k
2

=

n−1
j=0

mcZj ≡

n−1
j=0

mc(i′ + j′) mod |G| = |G|(n − k) ≡ 0 mod |G|.

Therefore, n − k is even. However, this is equivalent to: there are an even number of cycle lengths.
Indeed, denote the number of even-length cycles as E and that of odd cycles as O, where E + O = k.
We have n ≡ O mod 2 and hence n − k ≡ O − (E + O) ≡ E mod 2. �
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4.2. Transitive groups

Proposition 12. A transitive group has remoteness n − 1 if and only if it has covering radius n − 1;
otherwise, it has remoteness n.

Proof. Let G be a transitive group; we know that cr(G) ≤ n − 1 by Cameron and Wanless
[6, Proposition 15]. By the coset version of the orbit-counting lemma, the average distance between
any permutation π ∈ Sn and to G is n − 1. Therefore, r(G) ≥ n − 1 with equality if and only if there
exists π ∈ Sn such that d(π, g) = n − 1 for all g ∈ G and hence cr(G) ≥ n − 1. �

Corollary 4. Any 2-transitive group has remoteness n. If G acts regularly, then the Hall–Paige
conjecture [12] proved in [3,9,19] implies that r(G) = n − 1 if and only if its Sylow 2-subgroup is non-
cyclic.

We remark that if a transitive permutation group G has remoteness n − 1, then for any 1 ≤ i ≤ n,
StabG(i), acting on the remaining n − 1 points, has covering radius n.

We have shown in Proposition 7 that the remoteness of the cyclic group Cn acting on n elements
has remoteness n − 1 when n is odd and remoteness n when n is even. The dihedral group D2n is
treated in the next proposition.

Proposition 13. We have r(D2n) = n−1 if n is congruent to 1 or 5modulo 6 and r(D2n) = n otherwise.

Proof. For ease of presentation, assume that D2n acts on Zn. The whole dihedral group can be viewed
as two Latin squares: the cyclic Latin square formed by elements κa for 0 ≤ a ≤ n − 1, where
jκa

= a+ j, and a second Latin square formed by elements σκb for 0 ≤ b ≤ n−1 where jσκb
= b− j.

First, Cn ≤ D2n, so r(D2n) ≥ n − 1 for all n and r(D2n) = n for n even. Second, for n odd and not a
multiple of 3, we can easily show that the permutation π defined as jπ = 2j – i.e., the diagonal of the
cyclic Latin square – is at distance n − 1 from all the elements of the dihedral group (it agrees with
κ j and σκ3j on position j). Third, let n be an odd multiple of 3, and suppose that there exists π ∈ Sn
at distance n − 1 from all the elements of D2n. It agrees on position j with κaj where aj = jπ − j, and
with σκbj where bj = jπ + j. Denoting the square pyramidal number P =

n−1
j=0 j2 = n (n−1)(2n−1)

6 , we
have

n−1
j=0 (2j)2 ≡ P mod n and hence

P ≡

n−1
j=0

4(jπ)2 mod n

≡

n−1
j=0

(aj + bj)2 mod n

≡ 2P +

n−1
j=0

ajbj mod n

≡ 2P +

n−1
j=0

((jπ)2 − j2) mod n

≡ 2P mod n.

However, P = n 2n2−3n+1
6 is not a multiple of n when n is a multiple of 3, which is the desired

contradiction. �

4.3. Transitive groups of odd order

Let G act onΩ = {1, . . . , n}. An orbital of G is an orbit of G on ordered pairs. The number of orbitals
is the rank of G. If G is transitive on Ω , there is one diagonal orbital consisting of all pairs (x, x) for
x ∈ Ω . The edge set of any G-invariant graph or digraph is a union of orbitals.
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There is a natural bijection between the orbitals of a transitive group and the orbits of the stabilizer
of a point: if O is an orbital, the set {y: (x, y) ∈ O} is an orbit of the stabilizer of x.

Proposition 14. Let G be a transitive permutation group of degree n. Then the permutation π satisfies
d(g, π) = n − 1 for all g ∈ G if and only if, for every non-diagonal orbital O, (x, y) ∈ O implies
(xπ, yπ) ∉ O.

Proof. If (x, y), (xπ, yπ) ∈ O, then there exists g ∈ Gwith (xπ, yπ) = (xg, yg), and d(π, g) ≤ n−2.
Conversely, if not all distances d(g, π) are n− 1, then (since their average is n− 1) there exists g ∈ G
with d(π, g) ≤ n − 2, so π and g agree on two distinct points x and y, and (xπ, yπ) = (xg, yg). �

Corollary 5. Let G be a normal subgroup of a 2-transitive group of degree n. Then r(G) = n − 1 unless G
is itself 2-transitive, in which case r(G) = n.

Proof. If G is 2-transitive, there is only one non-diagonal orbital, and the result follows.
Suppose that G is a normal subgroup of the 2-transitive group H , and that it has r non-diagonal

orbitals, where r > 1. Then H/G permutes these orbitals transitively. By Jordan’s Theorem, H/G
contains an element fixing no orbital. If π is a permutation in this coset of G, then π has distance
n − 1 from every element of G. �

Corollary 6. If G is transitive of degree n, and a point stabilizer has an orbit of size greater than (n−1)/2,
then G has remoteness n.

Proof. There is an orbital O with |O| > n(n − 1)/2; so O ∩ Oπ ≠ ∅ for all permutations π . �

Part of the following Corollary is explained by Theorem 2 below.

Corollary 7. A permutation group of rank 3 has remoteness n − 1 if and only if either it has odd order
(in which case it is a group of automorphisms of a Paley tournament) or the graphs formed by the two
non-diagonal orbitals are isomorphic.

Proof. If the non-diagonal orbitals have different sizes, the preceding corollary applies. If they have
the same size, then π satisfies the condition of Proposition 14 if and only if it interchanges the two
orbitals, i.e. it is an isomorphism between each orbital graph and its complement. �

Corollary 8. If G is transitive and there is a self-complementary G-invariant graph, or a self-converse
G-invariant tournament, then G has remoteness n − 1.

Proof. The orbitals which are edges or arcs of the given graph or tournament are interchanged with
those which are not by π . �

A powerful consequence is given below.

Theorem 2. A transitive permutation group of degree n with odd order has remoteness n − 1.

Proof. LetG be a transitive permutation group of degree n. By our earlier result, it suffices to show that
G is contained in the automorphism group of a self-converse tournament. We prove this by induction
on n, so assume that this statement holds for permutation groups of smaller degree. Note that it
suffices to prove the result in the case where G is a subgroup of Sn maximal subject to having odd
order.

Case 1: G is imprimitive. By maximality, G is the wreath product of H and K , where H and K are
transitive groups of smaller degree having odd order. By the inductive hypothesis, each is contained
in the automorphism group of a self-converse tournament; call these tournaments S and T . Then form
the lexicographic product of S and T : that is, take |T | copies of S indexed by vertices of T , and orient
edges between two copies of S according to the arc between the corresponding vertices of T . Clearly
G is a group of automorphisms of the resulting tournament. We have to show that it is self-converse.
Choose an isomorphism σ from S to its complement, and put a copy of σ on each copy of S. Now
composewith an isomorphism τ from T to its complement, blown up to act on copies of S as it does on
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vertices of T . (This blow-up procedure means that the blown-up τ induces an isomorphism between
any two copies of S; combined with σ this makes it an anti-isomorphism.)

Case 2: G is primitive. By the Feit–Thompson theorem, G is soluble; so it has a normal elementary
abelian subgroup (isomorphic to the additive group of a vector space V over a prime field) which acts
regularly on the points. So we can identify the point set with V . Since G has odd order, no ordered pair
is reversed by G. So the orbits of G on ordered pairs of vertices come in self-converse pairs, and we
may pick one out of each pair to form a tournament. Since V acts regularly, this tournament is a Cayley
tournament for the group V : that is, there is a set S such that we have arcs from 0 to v for v ∈ S, and
arcs v to 0 for v ∉ S (and note that, if v ∈ S, then −v ∉ S and conversely); all other arcs are obtained
by translation. Now the linear map represented by−I reverses the orientation of all edges, so induces
an anti-automorphism. �

Remark. The Paley graphs are isomorphic to their complements, so their automorphism groups have
remoteness n − 1.

The symmetric and alternating groups S7 andA7 acting on the set of 2-element subsets of {1, . . . , 7}
have rank 3, with two orbitals of the same size, but the two invariant graphs (the line graph of K7 and
its complement) are not isomorphic. So these groups have remoteness n.

Remark. Our results resolve the question of remoteness for many, but not all, transitive permutation
groups. So the complexity question remains open: given permutations which generate a transitive
group G, decide whether r(G) = n.

4.4. The remoteness graph

Let G be a group acting transitively on a set Ω with cardinality n.

Definition 2. The remoteness graph R(G) of G has vertex set Ω2 and two distinct ordered pairs of
points (a, b), (c, d) ∈ Ω2 are adjacent in R(G) if and only if a = c or b = d or there exists g ∈ G such
that (b, d) = (ag, cg) (and hence (b, d) and (a, c) lie in the same orbital).

We easily obtain that R(G) is complete if and only if G is 2-transitive. We remind the reader of the
following notations from graph theory [2]. Let X be a graph, then its stability number (also known as
independence number), chromatic number, and clique number are denoted as α(X), χ(X), and ω(X),
respectively.

Proposition 15. For any transitive group G, α(R(G)) ≤ n with equality if and only if r(G) = n − 1.

Proof. Clearly, R(G) contains the Hamming graph H(2, n) as a spanning subgraph, hence α ≤ n. We
have α = n if and only if there are n ordered pairs (ai, bi) such that all ai and all bi are distinct and for
any i ≠ j, (ai, aj) is not in the same orbital as (bi, bj). Denoting bi = aiπ for all i, we see that π is a
permutation which satisfies the conditions of Proposition 14. �

Lemma 2. The graph R(G) is vertex-transitive.

Proof. We prove that G × G acting coordinatewise is in the automorphism group of R(G). Let
(a, b), (x, y) ∈ Ω2; we have x = ag, y = bh for some g, h ∈ G. Therefore, consider two vertices
(c, d), (e, f ) ∈ Ω2; they are adjacent if and only if either c = e, d = f , or (c, e) = (dg1, fg1) for some
g1 ∈ G. This is equivalent to either cg = eg , dh = fh, or (cg, eg) = (dhg2, fhg2) where g2 = h−1g1g;
in other words, (cg, dh) is adjacent to (eg, fh). �

We hence have the following inequalities [11, Corollary 7.5.2]:

n ≤ ω(R(G)) ≤
n2

α(R(G))
≤ χ(R(G)),

and we want to know when equality holds for the first two. Note that if G has a subset of n
permutations with minimum distance n (e.g., a regular subgroup), then we require that not only
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α(R(G)) = n, but also that the whole vertex set be partitioned into n stable sets. In other words, if G
has a regular subgroup, then it has remoteness n−1 if and only ifχ(R(G)) = α(R(G)) = ω(R(G)) = n.

Since R(G) is vertex-transitive, it is regular, and its valency can be easily computed. We have
(a, a) ∼ (b, c) if and only if either b = a, c = a, or (a, b) and (a, c) are in the same non-diagonal

orbital. For any non-diagonal orbital O, we have


|O|

n

2
neighbors of (a, a) from O. Therefore, the

valency is given by

2(n − 1) +
1
n2


O non-diagonal

|O|
2.

We can define an analogous graph for any set of permutations. If the set is a Latin square (in
particular if it is a regular permutation group), then the graph is the strongly regular Latin square
graph [1] with parameters (n2, 3(n− 1), n, 6); its clique number is n (if n > 2), its stability number is
n if and only if the Latin square has a transversal, and its chromatic number is n if and only if the Latin
square has an orthogonal mate.

4.5. List of transitive groups with remoteness n − 1

The table gives all transitive groups of degree n < 10 which have remoteness n − 1. The first
column gives the degree; the second column the number in theGAP listing (so that theGAP command
TransitiveGroup (9,17) produces the last group in the list, for example); the third column the
order of the group; and the fourth column refers to a note giving a result in our paper justifying the
conclusion where possible. There are no transitive groups of degree 6 with remoteness 5; for the last
three groups of degree 8, the result is shown by computation.

n k |G| Note
3 1 3 1
4 2 4 2
5 1 5 1

2 10 3
7 1 7 1

2 14 3
3 21 4

8 2 8 2
3 8 2
4 8 2
5 8 2
9 16

10 16
11 16

9 1 9 1
2 9 4
4 18 5
5 18 5
6 27 4
7 27 4
8 36 5
9 36 5

16 72 5
17 81 4

Notes

1. Cyclic group; Theorem 1.
2. Regular group, non-cyclic Sylow 2-subgroup; Corollary 4.
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3. Dihedral group; Proposition 13.
4. Group of odd order; Theorem 2.
5. Automorphism group of Paley graph; Corollary 8.
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