
296 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 20, NO. 2, FEBRUARY 2012

Rank Metric Decoder Architectures for Random
Linear Network Coding With Error Control

Ning Chen, Member, IEEE, Zhiyuan Yan, Senior Member, IEEE, Maximilien Gadouleau, Member, IEEE,
Ying Wang, Member, IEEE, and Bruce W. Suter, Senior Member, IEEE

Abstract—While random linear network coding is a powerful
tool for disseminating information in communication networks,
it is highly susceptible to errors caused by various sources. Due
to error propagation, errors greatly deteriorate the throughput
of network coding and seriously undermine both reliability
and security of data. Hence, error control for network coding
is vital. Recently, constant-dimension codes (CDCs), especially
Kötter–Kschischang (KK) codes, have been proposed for error
control in random linear network coding. KK codes can also be
constructed from Gabidulin codes, an important class of rank
metric codes. Rank metric decoders have been recently proposed
for both Gabidulin and KK codes, but they have high compu-
tational complexities. Furthermore, it is not clear whether such
decoders are feasible and suitable for hardware implementations.
In this paper, we reduce the complexities of rank metric decoders
and propose novel decoder architectures for both codes. The
synthesis results of our decoder architectures for Gabidulin and
KK codes with limited error-correcting capabilities over small
fields show that our architectures not only are affordable, but also
achieve high throughput.

Index Terms—Constant-dimension codes (CDCs), decoding,
error correction coding, Gabidulin codes, Galois fields, integrated
circuits, Kötter–Kschischang (KK) codes, network coding, rank
metric codes, subspace codes.

I. INTRODUCTION

N ETWORK coding [1] is a promising candidate for a new
unifying design paradigm for communication networks,

due to its advantages in throughput and robustness to network
failures. Hence, network coding is already used or considered
in gossip-based data dissemination, 802.11 wireless ad hoc net-
working, peer-to-peer networks, and mobile ad hoc networks
(MANETs).

Random linear network coding (RLNC) [2] is arguably
the most important class of network coding. RLNC treats all

Manuscript received March 29, 2010; revised September 10, 2010; accepted
October 17, 2010. Date of publication January 06, 2011; date of current version
January 18, 2012. This work was supported in part by Thales Communications,
Inc., a summer extension grant from Air Force Research Lab, and the National
Science Foundation under Grant ECCS-0925890. This paper was presented in
part at the IEEE Workshop on Signal Processing Systems, Tampere, Finland,
October2009.

N. Chen is with SandForce Inc., Saratoga, CA 95070 USA (e-mail:
nchen@sandforce.com).

Z. Yan is with the Department of Electrical and Computer Engineering,
Lehigh University, Bethlehem, PA 18015 USA (e-mail: yan@lehigh.edu).

M. Gadouleau is with the Department of Computer Science, Queen Mary,
University of London, E1 4NS U.K. (e-mail: mgadouleau@eecs.qmul.ac.uk).

Y. Wang is with the New Jersey Research Center, QUALCOMM, Inc.,
Bridgewater, NJ 08807 USA (e-mail: aywang11@gmail.com).

B. W. Suter is with Air Force Research Laboratory, Rome, NY 13441 USA
(e-mail: bruce.suter@rl.af.mil).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2010.2096239

packets as vectors over some finite field and forms an outgoing
packet by linearly combining incoming packets using random
coefficients. Due to its random linear operations, RLNC not
only achieves network capacity in a distributed manner, but
also provides robustness to changing network conditions.
Unfortunately, it is highly susceptible to errors caused by
various reasons, such as noise, malicious or malfunctioning
nodes, or insufficient min-cut [3]. Since linearly combining
packets results in error propagation, errors greatly deteriorate
the throughput of network coding and seriously undermine both
reliability and security of data. Thus, error control for random
linear network coding is critical.

Error control schemes proposed for RLNC assume two types
of transmission models. The schemes of the first type (see, for
example, [4]) depend on and take advantage of the underlying
network topology or the particular linear network coding op-
erations performed at various network nodes. The schemes of
the second type [3], [5] assume that the transmitter and receiver
have no knowledge of such channel transfer characteristics. The
two transmission models are referred to as coherent and nonco-
herent network coding, respectively.

It has been recently shown [3] that an error control code for
noncoherent network coding, called a subspace code, is a set of
subspaces (of a vector space), and information is encoded in the
choice of a subspace as a codeword; a set of packets that gen-
erate the chosen subspace is then transmitted [3]. A subspace
code is called a constant-dimension code (CDC) if its subspaces
are of the same dimension. CDCs are of particular interest since
they lead to simplified network protocols due to the fixed dimen-
sion. A class of asymptotically optimal CDCs has been proposed
in [3], and this class is referred to as the KK codes. A decoding
algorithm based on interpolation for bivariate linearized poly-
nomials is also proposed in [3] for the KK codes. It was shown
that KK codes correspond to lifting [5] of Gabidulin codes [6],
[7], which are a class of optimal rank metric codes. Gabidulin
codes are also called maximum rank distance (MRD) codes,
since they achieve the Singleton bound in the rank metric [6],
as Reed–Solomon (RS) codes achieve the Singleton bound of
Hamming distance. Due to the connection between Gabidulin
and KK codes, the decoding of KK codes can be viewed as
generalized decoding of Gabidulin codes, which involves devia-
tions as well as errors and erasures [5]. Gabidulin codes are sig-
nificant in themselves: For coherent network coding, the error
correction capability of error control schemes is succinctly de-
scribed by the rank metric [8]; thus, error control codes for co-
herent network coding are essentially rank metric codes.

The benefits of network coding above come at the price of ad-
ditional operations needed at the source nodes for encoding, at

1063-8210/$26.00 © 2011 IEEE

CHEN et al.: RANK METRIC DECODER ARCHITECTURES FOR RLNC WITH ERROR CONTROL 297

the intermediate nodes for linear combining, and at the destina-
tion node(s) for decoding. In practice, the decoding complexi-
ties at destination nodes are much greater than the encoding and
combining complexities. The decoding complexities of RLNC
are particularly high when large underlying fields are assumed
and when additional mechanisms such as error control are ac-
counted for. Clearly, the decoding complexities of RLNC are
critical to both software and hardware implementations. Fur-
thermore, area/power overheads of their VLSI implementations
are important factors in system design. Unfortunately, prior re-
search efforts have mostly focused on theoretical aspects of net-
work coding, and complexity reduction and efficient VLSI im-
plementation of network coding decoders have not been suffi-
ciently investigated so far. For example, although the decoding
complexities of Gabidulin and KK codes were analyzed in [9],
[10] and [3], [5], respectively, they do not reflect the impact of
the size of the underlying finite fields. To ensure high probability
of success for RLNC, a field of size or is desired [11].
However, these large field sizes will increase decoding complex-
ities and hence complicate hardware implementations. Finally,
to the best of our knowledge, hardware architectures for these
decoders have not been investigated in the open literature.

In this paper, we fill this significant gap by investigating com-
plexity reduction and efficient hardware implementation for de-
coders in RLNC with error control. This effort is significant to
the evaluation and design of network coding for several rea-
sons. First, our results evaluate the complexities of decoders for
RLNC as well as the area, power, and throughput of their hard-
ware implementations, thereby helping to determine the feasi-
bility and suitability of network coding for various applications.
Second, our research results provide instrumental guidelines to
the design of network coding from the perspective of complexity
as well as hardware implementation. Third, our research results
lead to efficient decoders and hence reduce the area and power
overheads of network coding.

In this paper, we focus on the generalized Gabidulin decoding
algorithm [5] for the KK codes and the modified Berlekamp-
Massey decoding algorithm in [12] for Gabidulin codes for two
reasons. First, compared with the decoding algorithm in [3], the
generalized Gabidulin decoding [5] has a smaller complexity,
especially for high-rate KK codes [5]. Second, components in
the errors-only Gabidulin decoding algorithm in [12] can be
easily adapted in the generalized Gabidulin decoding of KK
codes. Thus, among the decoding algorithms for Gabidulin
codes, we focus on the decoding algorithm in [12].

Although we focus on RLNC with error control in this paper,
our results can be easily applied to RLNC without error control.
For RLNC without error control, the decoding complexity is pri-
marily due to inverting of the global coding matrix via Gauss–
Jordan elimination, which is also considered in this paper.

Our main contributions include several algorithmic reformu-
lations that reduce the computational complexities of decoders
for both Gabidulin and KK codes. Our complexity-saving algo-
rithmic reformulations are given here.

• We first adopt normal basis representations for all finite
field elements and then significantly reduce the com-
plexity of bit-parallel normal basis multipliers by using
our common subexpression elimination (CSE) algo-
rithm [13];

• The decoding algorithms of both Gabidulin and KK codes
involve solving key equations. We adapt the inversionless
Berlekamp–Massey algorithm (BMA) in [14], [15] to
solving key equations for rank metric codes. Our inver-
sionless BMA leads to reduced complexities as well as
efficient architectures;

• The decoding algorithm of KK codes requires that the input
be arranged in a row reduced echelon (RRE) form [16].
We define a more generalized form called -RRE form,
and show that it is sufficient if the input is in the -RRE
form. This change not only reduces the complexity of re-
formulating the input, but also enables parallel processing
of decoding KK codes based on Cartesian products.

Another main contribution of this paper is efficient decoder
architectures for both Gabidulin and KK codes. Aiming to re-
duce the area and to improve the regularity of our decoder archi-
tectures, we have also reformulated other steps in the decoding
algorithm. To evaluate the performance of our decoder architec-
tures for Gabidulin and KK codes, we implement our decoder
architecture for two rate-1/2 Gabidulin codes and their corre-
sponding KK codes. Our KK decoders can be used in network
coding with various packet lengths by Cartesian product [5].
The synthesis results of our decoders show that our decoder ar-
chitectures for Gabidulin and KK codes over small fields with
limited error-correcting capabilities not only are affordable, but
also achieve high throughput. Our decoder architectures and im-
plementation results are novel to the best of our knowledge.

The decoders considered in this work are bounded distance
decoders, and their decoding capability is characterized in [5,
Theorem 11]. The thrust of our work is to reduce complexi-
ties and to devise efficient architectures for such decoders, while
maintaining their decoder capability. To this end, our reformu-
lations of the decoding algorithms do not affect the decoding ca-
pability of the bounded distance decoders of Gabidulin and KK
codes. The error performance of the bounded distance decoders
has been investigated in our previous works [17]–[19]. Hence,
despite its significance, a detailed error performance analysis is
beyond the scope of this paper, and we do not include it due to
limited space.

The remainder of this paper is organized as follows. After
briefly reviewing the background in Section II, we present our
complexity-saving algorithmic reformulations and efficient
decoder architectures in Sections III and IV, respectively.
In Section V, the proposed architectures are implemented in
Verilog and synthesized for area/performance evaluation. The
conclusion is given in Section VI.

II. PRELIMINARIES

A. Notation

Let denote a power of prime and denote a finite field
of order . We use , , and to denote an
identity matrix, an -dimensional vector space over , and
the set of all matrices over , respectively. For a set

, denotes the complement subset
and denotes the columns of in .

In this paper, all vectors and matrices are in bold face.
The rank weight of a vector over is defined as the max-

imal number of its coordinates that are linearly independent over

298 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 20, NO. 2, FEBRUARY 2012

Fig. 1. Data flow of Gabidulin decoding.

the base field . Rank metric between two vectors over is
the rank weight of their difference [20]. For a column vector

, we can expand each of its component into a row
vector over the base field . Such a row expansion leads to an

matrix over . In this paper, we slightly abuse the no-
tation so that can represent a vector in or a matrix in

, although the meaning is usually clear given the context.
Given a matrix , its row space, rank, and RRE form are de-

noted by , , and , respectively. For a sub-
space , its dimension is denoted by and

. The rank distance of two vectors and in is

defined as . The subspace distance
[3] of their row spaces is defined as

.
A linearized polynomial [21], [22] (or -polynomial) over

is a polynomial of the form , where
. For a linearized polynomial , its -degree is

defined to be the greatest value of for which is nonzero.
For convenience, let denote . The symbolic product of two
linearized polynomials and , denoted by (that is,

), is also a linearized polynomial. The
-reverse of a linearized polynomial is

given by the polynomial , where
for and is the -degree of . For a set

of field elements, we use to denote its minimal
linearized polynomial, which is the monic linearized polyno-
mial of least degree such that all the elements of are its roots.

B. Gabidulin Codes and Their Decoding

A Gabidulin code [6] is a linear code over , whose
parity-check matrix has a form as

...
...

. . .
...

(1)

where are linearly independent over
. Let denote . Since is an -di-

mensional vector space over , it is necessary that . The
minimum rank distance of a Gabidulin code is ,
and hence Gabidulin codes are MRD codes.

The decoding process of Gabidulin codes includes five major
steps: syndrome computation, key equation solver, finding the
root space, finding the error locators by Gabidulin’s algorithm
[6], and finding error locations. The data flow of Gabidulin de-
coding is shown in Fig. 1.

Key equation solvers based on a modified BMA [12] or a
modified Welch–Berlekamp algorithm (WBA) [23] have been
proposed. In this paper, we focus on the modified BMA due to
its low complexity.

As in RS decoding, we can compute syndromes for Gabidulin
codes as for any received vector
. Then the syndrome polynomial can be

used to solve the key equation [12, Theorem 3]

(2)

for the error span polynomial , using the BMA. Up to
error values ’s can be obtained by finding a basis

for the root space of using the methods in [24],
[25]. Then we can find the error locators ’s corresponding to

’s by solving a system of equations

(3)

where is the number of errors. Gabidulin’s algorithm [6] in
Algorithm 1 can be used to solve (3). Finally, the error locations

’s are obtained from ’s by solving

(4)

Algorithm 1 (Gabidulin’s Algorithm [6]).

Input: and

Output:

1.1 Compute matrices and as

otherwise.

1.2 Compute ’s recursively as
and

, for .

In total, the decoding complexity of Gabidulin codes is
roughly operations over [9], where

is the code rate, or operations over [10].
Note that all polynomials involved in the decoding process are
linearized polynomials.

Gabidulin codes are often viewed as the counterpart in rank
metric codes of the well-known RS codes. As shown in Table I,
an analogy between RS and Gabidulin codes can be established
in many aspects. Such an analogy helps us understand the de-
coding of Gabidulin codes and, in some cases, allows us to adapt
innovations proposed for RS codes to Gabidulin codes.

C. KK Codes and Their Decoding

By the lifting operation [5], KK codes can be constructed
from Gabidulin codes. Lifting can also be seen as a generaliza-
tion of the standard approach to random linear network coding

CHEN et al.: RANK METRIC DECODER ARCHITECTURES FOR RLNC WITH ERROR CONTROL 299

Fig. 2. Data flow of KK decoding.

TABLE I
ANALOGY BETWEEN RS AND GABIDULIN CODES

[2], which transmits matrices in the form , where
, , and .

In practice, the packet length could be very long. To accom-
modate long packets based on the KK codes, very large and
are needed, which results in prohibitively high complexity due
to the huge field size of . A low-complexity approach in [5]
suggested that instead of using a single long Gabidulin code, a
Cartesian product of many short Gabidulin codes with the same
distance can be used to construct CDCs for long packets via the
lifting operation.

Let the received matrix be , where and
. Note that we always assume the received matrix

is full-rank [5]. The row and column rank deficiencies of are
and , respectively. In the

decoding algorithm of [5], the matrix is first turned into an
RRE form, and then the RRE form of is expanded into

, where denotes

the column positions of leading entries in the first rows of
. The tuple is called a reduction of [5]. It

was proved [5] that

, where and . Now the
decoding problem to minimize the subspace distance becomes
a problem to minimize the rank distance.

For a KK code , the generalized rank decoding [5] finds an

error word . The error word

is expanded as a summation of products of column and row vec-
tors [5] such that . Each term is called
either an erasure, if is known, or a deviation, if is known,
or an error, if neither nor is known. In this general de-
coding problem, has columns from and has rows
from . Given a Gabidulin code of minimum distance , the
corresponding KK code is able to correct errors, erasures,
and deviations as long as if .

Algorithm 2 was proposed [5] for generalized decoding of
the KK codes, and its data flow is shown in Fig. 2. It requires

operations in [5].

Algorithm 2 (General Rank Decoding [5]).

Input: received tuple

Output: error word

2.1 Compute , ,
, , and

, where is the
-reverse of .

2.2 Compute the error span polynomial:
a) Use the modified BMA [12] to solve the key equation

such that
where .

b) Compute .
c) Use Gabidulin’s algorithm [6] to find that solves

, .
d) Compute followed by

.
2.3 Find a basis for the root space of .
2.4 Find the error locations:

a) Solve , using
Gabidulin’s algorithm [6] to find the error locators

.
b) Compute the error locations ’s by solving (4).
c) Compute the error word , where

each is the row expansion of .

III. COMPUTATIONAL COMPLEXITY REDUCTION

In general, RLNC is carried out over , where is any prime
power. That is, packets are treated as vectors over . Since
our investigation of computational complexities is for both soft-
ware and hardware implementations of RLNC, where data are
stored and transmitted in bits, we focus on RLNC over charac-
teristic-2 fields in our work, i.e., is a power of two. In some
cases, we further assume , as it leads to further complexity
reductions.

A. Finite Field Representation

Finite field elements can be represented by vectors using
different types of bases: polynomial basis, normal basis, and
dual basis [26]. In rank metric decoders, most polynomials
involved are linearized polynomials, and hence their evalu-
ations and symbolic products require computing their th
powers. Suppose a field element is represented by a vector
over with respect to a normal basis, computing th powers
(is a positive or negative integer) of the element is simply
cyclic shifts of the corresponding vector by positions, which
significantly reduces computational complexities. For example,

300 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 20, NO. 2, FEBRUARY 2012

TABLE II
COMPLEXITIES OF BIT-PARALLEL NORMAL BASIS MULTIPLIERS OVER FINITE FIELDS (FOR THESE TWO FIELDS, ALL THREE

IMPLEMENTATIONS HAVE THE SAME CPD.)

the computational complexity of Algorithm 1 is primarily due
to the following updates in Step 1.1:

(5)

which require divisions and computing [1]th powers. With
normal basis representation, [1]th powers are obtained by a
single cyclic shift. When , they can be computed in an in-
versionless form ,

, which also avoids finite field
divisions or inversions. Thus, using normal basis representation
also reduces the complexity of Gabidulin’s algorithm.

In addition to lower complexities of finite field arithmetic op-
erations, normal basis representation leads to reduced complex-
ities in the decoding of Gabidulin and KK codes for several rea-
sons. First, it was shown that using normal basis can facilitate
the computation of symbolic product [9]. Second, it was also
suggested [9] that solving (4) can be trivial using normal basis. If

is a normal basis, the matrix , whose rows
are vector representations of ’s with respect to the basis ’s,
becomes an identity matrix with additional all-zero columns.
Hence, solving (4) requires no computation. These two com-
plexity reductions were also observed in [10]. Third, if a normal
basis of is used as ’s and , the parity check matrix

in (1) becomes a cyclic matrix. Thus, syndrome computa-
tion becomes part of a cyclic convolution of
and , for which fast algorithms are available (see, for example,
[27]). Using fast cyclic convolution algorithms are favorable
when is large.

B. Normal Basis Arithmetic Operations

We also propose finite field arithmetic operations with re-
duced complexities, when normal basis representation is used.
When represented by vectors, the addition and subtraction of
two elements are simply component-wise addition, which is
straightforward to implement. For characteristic-2 fields ,
inverses can be obtained efficiently by a sequence of squaring
and multiplying, since for

[26]. Since the -th powers require no computation,
the complexity of inversion in turn depends on that of multi-
plication. Division can be implemented by a concatenation of
inversion and multiplication: , and hence the
complexity of division also depends on that of multiplication in
the end.

There are serial and parallel architectures for normal basis fi-
nite field multipliers. To achieve high throughput in our decoder,
we consider only parallel architectures. Most normal basis mul-
tipliers are based on the Massey–Omura (MO) architecture [26],
[28]. The complexity of a serial MO normal basis multiplier over

, , is defined as the number of terms in computing a
bit of the product , where and

and is a normal
basis. It has been shown [29] that a parallel MO multiplier over

needs AND gates and at most XOR

gates. For instance, for the fields and , their ’s are
minimized to 21 and 85, respectively [26]. Using a common
subexpression elimination algorithm [13], we significantly re-
duce the number of XOR gates while maintaining the same critical
path delays (CPDs) of one AND plus five XOR gates and one AND

plus seven XOR gates as direct implementations, respectively.
Our results are compared with those in [26] and [29] in Table II,
where we also provide the prime polynomial for each field.

The reduced gate count for normal basis multiplication is
particularly important for hardware implementations of RLNC.
This improvement is transparent to the complexity of decoders,
in terms of finite field operations. When decoders for RLNC
are realized in hardware, the reduced gate count for normal
basis multiplication will be reflected in reduced area and power
consumption.

C. Inversionless BMA

The modified BMA for rank metric codes [12] is similar to
the BMA for RS codes except that polynomial multiplications
are replaced by symbolic products. The modified BMA [12]
requires finite field divisions, which are more complex than
other arithmetic operations. Following the idea of inversion-
less RS decoder [14], we propose an inversionless variant in
Algorithm 3.

Algorithm 3. iBMA

Input: Syndromes

Output:

3.1 Initialize: , , and
.

3.2 For ,
a) Compute the discrepancy .
b) If , then go to (e).
c) Modify the connection polynomial:

.
d) If , go to (e). Otherwise, ,

, and . Go to (a).

e) Set and
.

3.3 Set .

Using a similar approach as in [14], we prove that the output
of Algorithm 3 is the same as produced by the modi-

CHEN et al.: RANK METRIC DECODER ARCHITECTURES FOR RLNC WITH ERROR CONTROL 301

fied BMA, except it is scaled by a constant .
However, this scaling is inconsequential since the two polyno-
mials have the same root space.

Using normal basis, the modified BMA in [12] requires at
most inversions, multiplications,
and additions over [9]. Our inversionless
version, Algorithm 3, requires at most multipli-
cations and additions. Since a normal basis in-
version is obtained by normal basis multiplications, the
complexity of normal basis inversion is roughly times that
of normal basis multiplication. Hence, Algorithm 3 reduces the
complexity considerably. Algorithm 3 is also more suitable for
hardware implementation, as shown in Section IV.

D. Finding the Root Space

Instead of finding roots of polynomials in RS decoding, we
need to find the root spaces of linearized polynomials in rank
metric decoding. Hence, the Chien search [30] in RS decoding
will have a high complexity for two reasons. First, it requires
polynomial evaluations over the whole field, whose complexity
is very high. Second, it cannot find a set of linearly independent
roots.

A probabilistic algorithm to find the root space was proposed
in [25]. For Gabidulin codes, it can be further simplified as sug-
gested in [9]. However, hardware implementations of proba-
bilistic algorithms require random number generators. Further-
more, the algorithm in [25] requires symbolic long division,
which is also not suitable for hardware implementations. Ac-
cording to [5], the average complexity of the probabilistic al-
gorithm in [25] is operations over , while that of
Berlekamp’s deterministic method [24] is operations in

plus operations in . Since their complexity dif-
ference is small, we focus on the deterministic method, which
is much easier to implement.

Suppose we need to find the root space of a linearized polyno-
mial , Berlekamp’s deterministic method first evaluates the
polynomial on a basis of the field such
that , . Then it expands ’s in the
base field as columns of an matrix and finds linearly
independent roots such that . Using the representation
based on , the roots are also the roots of
the given polynomial. Finding is to obtain the linear depen-
dent combinations of the columns of , which can be done by
Gaussian elimination.

E. -RRE Form

Given a received subspace spanned by a set of received
packets, the input of Algorithm 2 is a three-tuple, called a reduc-
tion of the received space represented by its generator matrix

; the three-tuple is obtained based on when it is in its RRE
form [5]. Thus, before the decoding starts, preprocessing is
performed on the received packets so as to obtain the RRE form
of . We show that the processed matrix needs to satisfy only a
relaxed constraint, which does not affect the decoding outcome,
while leading to two advantages. First, the relaxed constraint
results in reduced complexities in the preprocessing step. Second
and more importantly, the relaxed constraint enables parallel
processing of decoding KK codes based on Cartesian products.

We first define an -RRE form for received matrices. Given a
matrix , where and , the ma-
trix is in its -RRE form as long as (its leftmost columns)
is in its RRE form. Compared with the RRE form, the -RRE
form is more relaxed as it puts no constraints on the right part.
We note that an -RRE form of a matrix is not unique.

We now show that the relaxed constraint does not affect the
decoding. Similar to [5, Proposition 7], we first show that a re-
duction based on -RRE form of always exists. Given

and , where represents the reducing
row operations, the product is in its

-RRE form. We note that and ,
where the column and row rank deficiency of are given by

and , respectively. We
have the following result about the reduction based on .

Lemma 1: Let and and be defined as above. There
exists a tuple and a set

satisfying , , , and

so that .

See Appendix A for the proof of Lemma 1. Lemma 1 shows
that we can find an alternative reduction based on -RRE form
of , instead of an RRE form of . The key of our alternative
reduction of is that the reduction is mostly determined by the
first columns of . Also, this alternative reduction does
not come as a surprise. As shown in [5, Proposition 8], row opera-
tions on can produce alternative reductions. Next, we show that
decoding based on our alternative reduction is the same as in [5].
Similar to [5, Theorem 9], we have the following results.

Lemma 2: Let be a reduction of de-
termined by its -RRE form, we have

.

See Appendix B for the proof. Lemma 2 shows that the
subspace decoding problem is equivalent to the generalized
Gabidulin decoding problem with the alternative reduction

, which is obtained from an -RRE form of .
Our alternative reduction leads to two advantages. First, it re-

sults in reduced complexity in preprocessing. Given a matrix
, the preprocessing needed to transform into its -RRE

form is only part of the preprocessing to transform into its
RRE form. We can show that the maximal number of arith-
metic operations in the former preprocessing is given by

, whereas that of the latter prepro-
cessing is . Since

, the relaxed constraint leads to a lower complexity, and
the reduction depends on and . Second, the re-
duction for -RRE forms is completely determined by the left-
most columns of instead of the whole matrix, which greatly
simplifies hardware implementations. This advantage is partic-
ularly important for the decoding of CDCs that are lifted from
Cartesian products of Gabidulin codes. Since the row opera-
tions to obtain an -RRE form depend on only, decoding

can be divided into parallel and smaller de-
coding problems whose inputs are .
Thus, for these CDCs, we can decode in a serial manner with
only one small decoder, or in a partly parallel fashion with more

302 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 20, NO. 2, FEBRUARY 2012

decoders, or even in a fully parallel fashion. This flexibility al-
lows tradeoffs between cost/area/power and throughput. Fur-
thermore, since the erasures are determined by and are the
same for all , the computation of and in Algo-
rithm 2 can be shared among these parallel decoding problems,
thereby reducing overall complexity.

F. Finding Minimal Linearized Polynomials

Minimal linearized polynomials can be computed by solving
systems of linear equations. Given roots , the
minimal linearized polynomial satisfies

...
...

. . .
...

... ...
(6)

Thus, it can be solved by Gaussian elimination over the exten-
sion field . Gabidulin’s algorithm is not applicable because
the rows of the matrix are not the powers of the same element.

The complexity to solve (6) is very high. Instead, we re-
formulate the method from [21, Ch. 1, Theorem 7]. The main
idea of [21, Ch. 1, Theorem 7] is to recursively construct the
minimal linearized polynomial using symbolic products instead
of polynomial multiplications in polynomial interpolation.
Given linearly independent roots , we can
construct a series of linearized polynomials as:
and for

.
Although the recursive method in [21, Ch. 1, Theorem

7] is for -polynomials, we can adapt it to linearized poly-
nomials readily. A serious drawback of [21, Ch. 1, The-
orem 7] is that the evaluation of has a rapidly
increasing complexity when the degree of gets
higher. To eliminate this drawback, we reformulate the algo-
rithm so that the evaluation is done in a recursive
way. Our reformulated algorithm is based on the fact that

. Rep-
resenting as , we obtain Algorithm 4.

Algorithm 4 (Minimal Linearized Polynomials).

Input: Roots

Output: The minimal linearized polynomial

4.1 Set , for and
.

4.2 For ,
a) If , and

for ; Otherwise,

and for
.

Since powers of require only cyclic shifting, the opera-
tions in Algorithm 4 are simple. Also, Algorithm 4 does not
require the roots to be linearly independent. In Algorithm 4,

for and .

If are linearly dependent, and hence
is ignored. So Algorithm 4 integrates detection of linearly

dependency at no extra computational cost.
Essentially, Algorithm 4 breaks down evaluations of high

-degree polynomials into evaluations of polynomials with
-degree of one. It avoids operations with very high complexity

while maintaining the same total complexity of the algorithm.

IV. ARCHITECTURE DESIGN

Aiming to reduce the storage requirement and total area as
well as to improve the regularity of our decoder architectures,
we further reformulate the steps in the decoding algorithms of
both Gabidulin and KK codes. Again, we assume the decoder
architectures are suitable for RLNC over , where is a power
of two.

A. High-Speed BMA Architecture

To increase the throughput, regular BMA architectures with
shorter CPD are necessary. Following the approaches in [15],
we develop two architectures based on Algorithm 3, which are
analogous to the riBM and RiBM algorithms in [15].

In Algorithm 3, the critical path is in step 3.2(a). Note that
is the th coefficient of the discrepancy polynomial

. By using ,
can be computed as

(7)

which has the same structure as step 3.2(c). Hence, this reformu-
lation is more conducive to a regular implementation. Given the
similarities between step 3.2(a) and (7), and can be
combined together into one polynomial . Similarly,
and can be combined into one polynomial . These
changes are incorporated in our RiBMA algorithm, shown in
Algorithm 5.

Algorithm 5. RiBMA

Input: Syndromes

Output:

5.1 Initialize: ,
, , and .

5.2 For ,
a) Modify the combined polynomial:

;
b) Set ;
c) If and , set , ,

and ;
d) Set ,

;
e) Set and

.
5.3 Set .

CHEN et al.: RANK METRIC DECODER ARCHITECTURES FOR RLNC WITH ERROR CONTROL 303

Following Algorithm 5, we propose a systolic RiBMA archi-
tecture shown in Fig. 3, which consists of identical pro-
cessing elements (BEs), whose circuitry is shown in Fig. 4. The
central control unit BCtrl, the rightmost cell in Fig. 3, updates
, generates the global control signals and , and passes

along the coefficient . The control signal is set to 1
only if and . In each processing element, there
are two critical paths, both of which consist of one multiplier
and one adder over .

B. Generalized BMA

The key equation of KK decoding is essentially the same as
(2), but has a -degree less than instead of .
Actually, in KK decoding, we do not know the exact value of

before solving the key equation. All we need is to determine
the maximum number of correctable errors given erasures
and deviations, which is given by .
Hence, we adapt our BMA in Section III-C to KK decoding, as
in Algorithm 6. To apply Algorithm 6 to Gabidulin decoding,
we can simply use .

Algorithm 6 (Generalized RiBMA).

Input: and

Output:

6.1 Initialize as follows: ,
,

, , and .
6.2 For ,

a) Modify the combined polynomial:
;

b) Set ;
c) If and , set , ,

and ;
d) Set ,

;

e) Set and
.

6.3 Set .

Compared with Algorithm 5, we replace by . The variable
makes it difficult to design regular architectures. By carefully

initializing and , we ensure that the desired
output is always at a fixed position of , regard-
less of . Hence, the only irregular part is the initialization.
The initialization of Algorithm 6 can be done by shifting in at
most cycles. Hence, the RiBMA architecture in Fig. 3 can be
adapted to the KK decoder and keep the same worst case latency
of cycles.

C. Gaussian Elimination

We need Gaussian elimination to obtain -RRE forms as well
as to find root spaces. Furthermore, Gabidulin’s algorithm in
Algorithm 1 is essentially a smart way of Gaussian elimination,
which takes advantage of the properties of the matrix. The re-
duction (to obtain -RRE forms) and finding the root space are

Fig. 3. RiBMA architecture.

Fig. 4. Processing element �� (� is a cyclic shift and requires no hardware
but wiring).

Gaussian eliminations on matrices over , while Gabidulin’s
algorithm operates on matrices over . Here, we focus on
Gaussian eliminations over and Gabidulin’s algorithm will
be discussed in Section IV-D.

For high-throughput implementations, we adapt the pivoting
architecture in [31], which was developed for non-singular ma-
trices over . It always keeps the pivot element on the top-
left location of the matrix, by cyclically shifting the rows and
columns. Our Gaussian elimination algorithm, shown in Algo-
rithm 7, has three key differences from the pivoting architecture
in [31]. First, Algorithm 7 is applicable to matrices over any
field. Second, and more importantly, Algorithm 7 can be used
for singular matrices. This feature is necessary since singular
matrices occur in the reduction for the RRE form and finding
the root space. Third, Algorithm 7 is also flexible about matrix
sizes, which are determined by the variable numbers of errors,
erasures, and deviations.

Algorithm 7 (Gaussian Elimination for Root Space).

Input: , whose rows are evaluations of over
the normal basis, and

Output: Linearly independent roots of

7.1 Set .
7.2 For

a)
b) While and

, , and .
c) If is not zero, , ,

and ; Otherwise, .
7.3 The first rows of are all zeros and the first

rows of are roots.

The eliminate and shiftup operations are quite similar to those
in [31, Algorithm 2]. In , for ,

for
, and . Note that a cyclic row

shift and a cyclic column shift are already embedded in the elim-
inate operation. In the operation, the first row

304 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 20, NO. 2, FEBRUARY 2012

Fig. 5. Regular architecture for Gaussian elimination.

is moved to the th row while the second to the
th rows are moved up. That is, for ,

if , and for
. The operation essen-

tially mimics all row operations in eliminate without the column
shift: for , for

, and . In the shiftleft opera-
tion, all columns are cyclicly shifted to the left. In other words,
for all and , .
By adding a shiftleft operation, Algorithm 7 handles both sin-
gular and nonsingular matrices while [31, Algorithm 2] works
for nonsingular matrices only. Since is always full rank, the
roots obtained are guaranteed to be linearly independent.

We can get the root space using Algorithm 7, and we can also
use it in KK decoding to reduce the received vector to an -RRE
form. However, Algorithm 7 only produces . We extend it to
Algorithm 8 below so as to obtain simultaneously.

Algorithm 8 (Gaussian Elimination for -RRE Forms).

Input: matrix and matrix

Output: , , , and

8.1 Set , and as empty.
8.2 For each column

a)
b) While and

, , , .
c) If is not zero, , ,

, .
d) Otherwise, , append the first column of

to , set the top-right element of to one, and
add to .

8.3 Set . The deviations are given by the
first rows of .
8.4 For each column , and

.
8.5 The received vector is given by .

Fig. 6. Processing element �� .

In Algorithm 8, we incorporate the extraction of , , and
into Gaussian elimination. Our architecture has the same worst
case latency as Algorithm 7 and requires no extra cycles to ex-
tract out of the -RRE form. Hence, the throughput also re-
mains the same.

Algorithm 7 is implemented by the regular architecture
shown in Fig. 5, which is a 2-D array of processing
elements (GE’s). The leftmost columns of processing el-
ements correspond to , and the rightmost columns .
Algorithm 8 can be implemented with the same architecture
with GE’s. The leftmost columns of processing
elements correspond to , and the rightmost columns . The
elements for are omitted in the figure. The circuitry of the
processing element GE is shown in Fig. 6. The control signal

for row chooses from five inputs based on the operation:
keeping the value, shiftleft, eliminate (or reduce), and shiftup
(using the first row or the next row).

D. Gabidulin’s Algorithm

In Algorithm 1, the matrix is first reduced to a triangular form.
It takes advantage of the property of the matrix so that it requires
no division in the first stage. In the first stage, we need to perform
elimination on only one row. We use a similar pivoting scheme
like Algorithm 7. When a row is reduced to having only one
nonzero element, a division is used to obtain one coefficient of

. Then it performs a backward elimination after getting each
coefficient. Hence, we introduce a backward pivoting scheme,
where the pivot element is always at the bottom-right corner.

CHEN et al.: RANK METRIC DECODER ARCHITECTURES FOR RLNC WITH ERROR CONTROL 305

Fig. 7. Our architecture of Gabidulin’s algorithm.

In Algorithm 1, there are two matrices over , and
. In step 1.2, it requires only ’s to compute the coefficients.

To compute in (5), it requires only and .
And for in (5), it requires only and . Re-
cursively, only those ’s where are necessary.
Actually, given any , entries can be
computed with the entries . With

, we need to store only values to keep
track of . Hence, we reduce the storage of from

-bit registers down to . We cannot reduce the storage of
to because we have to use the pivoting scheme for
short critical paths.

In our decoder, Algorithm 1 is implemented by the regular
architecture shown in Fig. 7, which includes an array of
AE’s and a one-dimensional array of QE’s. The circuitry of
the processing element and is shown in Figs. 8 and
9. The upper MUX in AE controls the output sending upward
along the diagonal. Its control signal is 1 for the second
row and 0 for other rows since we update one row in a cycle
and we keep the pivot on the upper left corner in Step 1.1. The
control of the lower MUX in AE is 0 for working on Step 1.1,
and 1 for working on Step 1.2. Similarly the control of the
MUX in QE is 0 for working on Step 1.1, and 1 for working
on Step 1.2. However, in Step 1.1, only part of QE’s need up-
date and others should maintain their values and their control
signals ’s are set to 2. Initially, and
for . Step 1.1 needs substeps. In the first

substeps, , ,
, and for sub-

step . In the last substep, and all ’s are set to
2. This substep is to put the updated into the original posi-
tion. In Step 1.2, the pivot is in the right lower corner, where
we compute ’s. Step 1.2 also needs substeps, in which
all ’s and ’s are set to 1. First is computed by

where . Note that the inversion
may need clock cycles. In each substep, the matrix is
moving down the diagonal so the to be inverted is always
at the bottom right corner. At the same time, the ’s are also
moving down. Basically, in substep , the architecture updates

’s to for by doing one
backward elimination at each substep.

Fig. 8. Processing element �� .

Fig. 9. Processing element �� .

E. Low-Complexity Linearized Interpolation

It would seem that three registers are needed to store ,
’s, and ’s, respectively, in Algorithm 4. However, we

can implement Algorithm 4 with a single register of size
. First, we note that ’s are used to initialize ’s,

and only ’s are used in the updates. Second, after the th
iteration of step 4.2, the -degree of is no more
than and we need only there-
after. Thus, we can store the coefficients of and

in a register of size . We refer
to this register as and index it from left to right.
Note that are stored at the lower end
of the register, and the coefficients of are stored at
the higher end of the register. At each iteration, the content of
the register is shifted to the left by one position, so that
is always stored at .

Algorithm 9 (Reformulated Algorithm for Minimal Linearized
Polynomials).

Input: Roots

Output: The minimal linearized polynomial

9.1 Initialization: for , and

.
9.2 For ,

a) If ,
i) For ,

;
ii) For ,

;

b) Otherwise, for , .

9.3 .

306 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 20, NO. 2, FEBRUARY 2012

Fig. 10. Architecture of linearized polynomial interpolation.

Fig. 11. Processing element �� (� is a cyclic shift, and requires no hard-
ware but wiring). For simplicity, we have omitted the superscripts of � .

We note that the updates involve , which is always
set to zero (see Fig. 10). When an input is not linearly
independent with , . In this case, the
algorithm simply ignores the input, and the registers are
shifted to the left by one position. Hence, whether or not the
inputs are linearly independent, the minimal
linearized polynomial for the inputs will be available after
iterations. This flexibility is important for our decoder architec-
ture, since the number of linearly independent inputs varies.

Algorithm 9 is implemented by the systolic architecture
shown in Fig. 10, which consists of processing ele-
ments (ME’s). The circuitry of the processing element
is shown in Fig. 11. The cr signal is 1 only when .
The signal for each cell is 1 only if . Basi-
cally, controls whether the update is for or

as in Algorithm 4.

F. Decoding Failure

A complete decoder declares decoding failure when no valid
codeword is found within the decoding radius of the received
word. To the best of our knowledge, decoding failures of
Gabidulin and KK codes were not discussed in previous works.
Similar to RS decoding algorithms, a rank decoder can return
decoding failure when the roots of the error span polynomial

are not unique. That is, the root space of has a
dimension smaller than the -degree of . Note that this
applies to both Gabidulin and KK decoders. For KK decoders,
another condition of decoding failure is when the total number
of erasures and deviations exceeds the decoding bound .

G. Latency and Throughput

We analyze the worst case decoding latencies of our decoder
architectures, in terms of clock cycles, in Table III.

As in [31], the latency of Gaussian elimination for the -RRE
form is at most cycles. Similarly, the latency
of finding the root space is at most .

For Gabidulin’s algorithm, it needs one cycle per row for for-
ward elimination and the same for backward elimination. For
each coefficient, it takes cycles to perform a division. Hence,
it needs at most and
for and respectively. The latencies of finding the minimal

TABLE III
WORST CASE DECODING LATENCY (IN TERMS OF CLOCK CYCLES). GAUSSIAN

ELIMINATION OVER (ROOT SPACE IN GABIDULIN AND KK DECODERS)
HAS THE LONGEST CRITICAL PATH OF ONE MULTIPLIER, ONE ADDER, ONE

TWO-INPUT MUX, AND ONE FIVE-INPUT MUX

linearized polynomials are determined by the number of regis-
ters, which is to accommodate , , and ,
whose degrees are , , and , respectively. The syndromes
can be computed by sets of multiply-and-accumulators in
cycles. Note that the computations of , , and
can be done concurrently. The latency of RiBMA is for
iterations. The latency of a symbolic product is de-
termined by the -degree of . When computing ,
we are concerned about only the terms of -degree less than

because only those are meaningful for the key equation.
For computing , the result of in
can be reused, so it needs only one symbolic product. In total,
assuming , the decoding latencies of our Gabidulin and
KK decoders are and
cycles, respectively.

One assumption in our analysis is that the unit that com-
putes in Figs. 9 and 11 is implemented with pure com-
binational logic, which leads to a long CPD for large ’s. To
achieve a short CPD for large ’s, it is necessary to pipeline
the unit that computes . There are two ways to pipeline
it: that requires multiplica-
tions, or that requires multiplications for divi-
sion. To maintain a short CPD, needs to be implemented
sequentially with one clock cycle for each multiplication. Let

and it requires at most
clock cycles for getting minimal linearized polynomials ,

, and . Similarly, it requires at most
more cycles to perform forward elimination in Gabidulin’s al-
gorithm for the error locator, and the latency of this step will be

cycles.
In our architectures, we use a block-level pipeline scheme for

high throughput. Data transfers between modules are buffered
into multiple stages so the throughput is determined by only the
longest latency of a single module. For brevity, we present only
the data flow of our pipelined Gabidulin decoder in Fig. 12. The
data in different pipeline stages are for different decoding ses-
sions. Hence, these five units can work on five different sessions
currently for higher throughput. If some block finishes before
others, it cannot start another session until all are finished. So the
throughput of our block-level pipeline decoders is determined
by the block with the longest latency. For Gabidulin decoders,
the block of finding root space is the bottleneck that requires

CHEN et al.: RANK METRIC DECODER ARCHITECTURES FOR RLNC WITH ERROR CONTROL 307

Fig. 12. Data flow of our pipelined Gabidulin decoder.

TABLE IV
SYNTHESIS RESULTS OF DECODERS FOR GABIDULIN AND KK CODES

cycles, the longest latency in the worst case sce-
nario. For KK decoders, the bottleneck is the RRE block, which
requires cycles.

V. IMPLEMENTATION RESULTS AND DISCUSSIONS

To evaluate the performance of our decoder architectures, we
implement our architectures for Gabidulin and KK codes for
RLNC over . Note that, although the random linear combi-
nations are carried out over , decoding of Gabidulin and KK
codes are performed over extension fields of .

We restrict , the number of received packets, to save hard-
ware while maintaining the error correction capability. We note
that a large leads to more rows in the architecture in Fig. 5.
Note that we assume the input matrix is full rank as [5]. When

, the number of deviations is at least
and it is uncorrectable. Hence, in our implementation of KK

decoders, we assume is less than .

A. Implementation Results

We implement our decoder architecture in Verilog for an (8,
4) Gabidulin code over and a (16, 8) one over , which
can correct errors of rank up to two and four, respectively. We
also implement our decoder architecture for their corresponding
KK codes, which can correct errors, erasures, and devia-
tions as long as is no more than five or nine, respec-
tively. Our designs are synthesized using Cadence RTL Com-
piler 9.1 and FreePDK 45 nm standard cell library [32]. The syn-
thesis results are given in Table IV. In these tables, the total area
includes both cell area and estimated net area, the gate counts
are in equivalent numbers of two-input NAND gates, and the total
power includes both leakage and estimated dynamic power. All
estimations are made by the synthesis tool. The throughput is
computed as .

TABLE V
PERFORMANCE OF KK DECODERS FOR 512-byte PACKETS

To provide a reference for comparison, the gate count of our
(8, 4) KK decoder is only 62% to that of the (255, 239) RS
decoder over the same field in [33], which is 115,500. So
for Gabidulin and KK codes over small fields, which have lim-
ited error-correcting capabilities, their hardware implementa-
tions are feasible. The area and power of decoder architectures
in Table IV appear affordable except for applications with very
stringent area and power requirements.

B. Implementation Results of Long Codes

Although the area and power shown in Table IV are affordable
and high throughputs are achieved, the Gabidulin and KK codes
used have very limited block lengths 8 and 16. For practical net-
work applications, the packet size may be large [11]. One ap-
proach to increase the block length of a CDC is to lift a Cartesian
product of Gabidulin codes [5]. We also consider the hardware
implementations for this case. We assume a packet size of 512
bytes, and use a KK code that is based on Cartesian product of
511 length-8 Gabidulin codes. As observed in Section III-E, the

-RRE form allows us to either decode this long KK code in
a serial, partly parallel, or fully parallel fashion. For example,
more decoder modules can be used to decode in parallel for
higher throughput. We list the gate counts and throughput of the
serial and factor-7 parallel schemes based on the (8, 4) KK de-
coder and those of the serial and factor-5 parallel schemes based
on the (16, 8) KK decoder in Table V.

In Table V, we simply use multiple KK decoders for parallel
implementations. Parallel KK decoders actually share the same

, , , and . Hence, some hardware can be also shared,
such as the left part of Gaussian elimination for reduction in
Fig. 6 and the interpolation block for . With the same
latency, these hardware savings are roughly 7% of one single
KK decoder.

C. Discussions

Our implementation results above show that the hardware im-
plementations of RLNC over small fields and with limited error
control are quite feasible, unless there are very stringent area
and power requirements. However, small field sizes imply lim-
ited block length and limited error control. As shown above, the
block length of a constant-dimension code can be increased by
lifting a Cartesian product of Gabidulin codes. While this easily
provides arbitrarily long block length, it does not address the
limited error control associated with small field sizes. For ex-
ample, a Cartesian product of (8, 4) Gabidulin codes has the
same error correction capability as the (8, 4) KK decoder, and
their corresponding CDCs also have the same error-correction
capability. If we want to increase the error correction capabili-
ties of both Gabidulin and KK codes, longer codes are needed

308 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 20, NO. 2, FEBRUARY 2012

and in turn larger fields are required. A larger field size implies
a higher complexity for finite field arithmetic, and longer codes
with greater error correction capability also lead to higher com-
plexity. It remains to be seen whether the decoder architectures
continue to be affordable for longer codes over larger fields, and
this will be the subject of our future work.

VI. CONCLUSION

This paper presents novel hardware architectures for
Gabidulin and KK decoders. Our work not only reduces the
computational complexity for the decoder but also devises
regular architectures suitable for hardware implementations.
Synthesis results using a standard cell library confirm that our
designs achieve high speed and high throughput.

APPENDIX A
PROOF OF LEMMA 1

Proof: This follows the proof of [5, Proposition 7] closely.

Suppose the RRE of is

and an - form of is . Since the RRE

form of is unique, . Thus, and . In the
proof of [5, Proposition 7], is chosen based on . Thus, we
choose . Since is uniquely determined by and
is by , we also have . Finally, choosing ,
the rest follows the same steps as in the proof of [5, Proposition
7].

APPENDIX B
PROOF OF LEMMA 2

Proof: This follows a similar approach as in [5, Appendix
C]. We havethe following.

(8)

(9)

where (8) follows from and (9) follows
from . Since , the

subspace distance is given by

.

ACKNOWLEDGMENT

The authors would like to thank Dr. D. Silva and Prof. F. R.
Kschischang for valuable discussions and the reviewers for their
constructive comments.

REFERENCES

[1] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network infor-
mation flow,” IEEE Trans. Inf. Theory, vol. 46, no. 4, pp. 1204–1216,
Jul. 2000.

[2] T. Ho, M. Médard, R. Koetter, D. R. Karger, M. Effros, J. Shi, and B.
Leong, “A random linear network coding approach to multicast,” IEEE
Trans. Inf. Theory, vol. 52, no. 10, pp. 4413–4430, Oct. 2006.

[3] R. Kötter and F. R. Kschischang, “Coding for errors and erasures in
random network coding,” IEEE Trans. Inf. Theory, vol. 54, no. 8, pp.
3579–3591, Aug. 2008.

[4] N. Cai and R. W. Yeung, “Network coding and error correction,” in
Proc. IEEE Inf. Theory Workshop (ITW’02), Oct. 20–25, 2002, pp.
119–122.

[5] D. Silva, F. R. Kschischang, and R. Kötter, “A rank-metric approach
to error control in random network coding,” IEEE Trans. Inf. Theory,
vol. 54, no. 9, pp. 3951–3967, Sep. 2008.

[6] E. M. Gabidulin, “Theory of codes with maximum rank distance,”
Probl. Inf. Transm., vol. 21, no. 1, pp. 1–12, Jan.–Mar. 1985.

[7] R. M. Roth, “Maximum-rank array codes and their application to criss-
cross error correction,” IEEE Trans. Inf. Theory, vol. 37, no. 2, pp.
328–336, Mar. 1991.

[8] D. Silva and F. R. Kschischang, “On metrics for error correction in net-
work coding,” IEEE Trans. Inf. Theory, vol. 55, no. 12, pp. 5479–5490,
Dec. 2009.

[9] M. Gadouleau and Z. Yan, “Complexity of decoding Gabidulin codes,”
in Proc. 42nd Ann. Conf. Inf. Sci. Syst. (CISS’08), Princeton, NJ, Mar.
19–21, 2008, pp. 1081–1085.

[10] F. R. Kschischang and D. Silva, “Fast encoding and decoding of
Gabidulin codes,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT’09),
Seoul, Korea, Jun. 28–Jul. 3 2009, pp. 2858–2862.

[11] P. A. Chou, Y. Wu, and K. Jain, “Practical network coding,” in Proc.
41st Ann. Allerton Conf. Commun., Control, and Computing, Monti-
cello, IL, Oct. 2003.

[12] G. Richter and S. Plass, “Error and erasure decoding of rank-codes with
a modified Berlekamp-Massey algorithm,” in Proc. 5th Int. ITG Conf.
Source and Channel Coding (SCC’04), Erlangen, Germany, Jan. 2004,
pp. 249–256.

[13] N. Chen and Z. Yan, “Cyclotomic FFTs with reduced additive complex-
ities based on a novel common subexpression elimination algorithm,”
IEEE Trans. Signal Process., vol. 57, no. 3, pp. 1010–1020, Mar. 2009.

[14] H. Burton, “Inversionless decoding of binary BCH codes,” IEEE Trans.
Inf. Theory, vol. IT-17, no. 4, pp. 464–466, Jul. 1971.

[15] D. V. Sarwate and N. R. Shanbhag, “High-speed architectures for
Reed–Solomon decoders,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 9, no. 5, pp. 641–655, Oct. 2001.

[16] P. Lancaster and M. Tismenetsky, The Theory of Matrices, ser.
Comput. Sci. Appl. Math., 2nd ed. Orlando, FL: Academic, 1985.

[17] M. Gadouleau and Z. Yan, “On the decoder error probability of
bounded rank-distance decoders for maximum rank distance codes,”
IEEE Trans. Inf. Theory, vol. 54, no. 7, pp. 3202–3206, Jul. 2008.

[18] M. Gadouleau and Z. Yan, “Decoder error probability of bounded
distance decoders for constant-dimension codes,” in Proc. IEEE Int.
Symp. Inf. Theory (ISIT’09), Seoul, Korea, Jun. 28–Jul. 3 2009, pp.
2226–2230.

[19] M. Gadouleau and Z. Yan, “On the decoder error probability of
bounded rank distance decoders for rank metric codes,” in Proc. IEEE
Inf. Theory Workshop (ITW’09), Sicily, Italy, Oct. 11–16, 2009, pp.
485–489.

[20] P. Delsarte, “Bilinear forms over a finite field, with applications to
coding theory,” J. Comb. Theory, Ser. A, vol. 25, pp. 226–241, 1978.

[21] O. Ore, “On a special class of polynomials,” Trans. Amer. Math. Soc.,
vol. 35, no. 3, pp. 559–584, 1933.

[22] O. Ore, “Contributions to the theory of finite fields,” Trans. Amer.
Math. Soc., vol. 36, no. 2, pp. 243–274, 1934.

[23] P. Loidreau, “A Welch-Berlekamp like algorithm for decoding
Gabidulin codes,” in Proc. 4th Int. Workshop Coding and Cryptog-
raphy (WCC’05), Bergen, Norway, Mar. 14–18, 2005, vol. 3969,
Lecture Notes in Computer Science, pp. 36–45.

[24] E. R. Berlekamp, Algebraic Coding Theory. New York: McGraw-
Hill, 1968.

[25] V. Skachek and R. M. Roth, “Probabilistic algorithm for finding roots
of linearized polynomials,” Des. Codes Cryptogr., vol. 46, no. 1, pp.
17–23, Jan. 2008.

[26] E. D. Mastrovito, “VLSI architectures for computations in Galois
fields,” Ph.D. dissertation, Dept. Electr. Eng., Linköping Univ.,
Linköping, Sweden, 1991.

[27] M. Wagh and S. Morgera, “A new structured design method for convo-
lutions over finite fields—Part I,” IEEE Trans. Inf. Theory, vol. IT-29,
no. 4, pp. 583–595, Jul. 1983.

CHEN et al.: RANK METRIC DECODER ARCHITECTURES FOR RLNC WITH ERROR CONTROL 309

[28] J. K. Omura and J. L. Massey, “Computational method and apparatus
for finite field arithmetic,” U.S. Patent 4 587 627, May 6, 1986.

[29] A. Reyhani-Masoleh and M. A. Hasan, “A new construction of
Massey–Omura parallel multiplier over ���� �,” IEEE Trans.
Comput., vol. 51, no. 5, pp. 511–520, May 2002.

[30] E. R. Berlekamp, Algebraic Coding Theory, revised ed. Laguna Hills,
CA: Aegean Park Pres, 1984.

[31] A. Bogdanov, M. C. Mertens, C. Paar, J. Pelzl, and A. Rupp, “A par-
allel hardware architecture for fast Gaussian elimination over GF(2),”
in Proc. 14th Ann. IEEE Symp. Field-Programmable Custom Com-
puting Machines (FCCM’06), Napa Valley, CA, Apr. 24–26, 2006, pp.
237–248.

[32] J. E. Stine, I. Castellanos, M. Wood, J. Henson, F. Love, W. R. Davis,
P. D. Franzon, M. Bucher, S. Basavarajaiah, J. Oh, and R. Jenkal,
“FreePDK: An open-source variation-aware design kit,” in Proc. IEEE
Int. Conf. Microelectron. Syst. Education (MSE’07), San Diego, CA,
Jun. 3–4, 2007, pp. 173–174.

[33] H. Lee, “High-speed VLSI architecture for parallel Reed–Solomon de-
coder,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 11, no.
2, pp. 288–294, Apr. 2003.

Ning Chen (S’06–M’10) received the B.E. and M.E.
degrees from Tsinghua University, Beijing, China, in
2001 and 2004, respectively, and the Ph.D. degree
from Lehigh University, in 2010, all in electrical en-
gineering.

Currently he is with the Enterprise Storage Di-
vision, PMC-Sierra, Allentown, PA. His research
interests are in the VLSI design and implementation
of digital signal processing and communication
systems.

Zhiyuan Yan (S’00–M’03–SM’08) received the
B.E. degree in electronic engineering from Tsinghua
University, Beijing, China, in 1995, and the M.S.
and Ph.D. degrees in electrical engineering from the
University of Illinois, Urbana, in 1999 and 2003,
respectively.

During the summers of 2000 and 2002, he was
a Research Intern with Nokia Research Center,
Irving, TX. He joined the Electrical and Computer
Engineering Department, Lehigh University, Beth-
lehem, PA, as an Assistant Professor in August

2003. He has authored or coauthored over 70 technical papers in refereed
journals and conference proceedings. He is an associate editor for the Journal
of Signal Processing Systems. His current research interests are in coding
theory, cryptography, wireless communications, and VLSI implementations of
communication and signal processing systems.

Dr. Yan is a member of Tau Beta Pi, Sigma Xi, and Phi Kappa Phi. He served
as technical program committee co-chair and general co-chair for ACM Great
Lakes Symposium on VLSI in 2007 and 2008, respectively. He has served as an
associate editor for the IEEE COMMUNICATIONS LETTERS since 2008. He is a
member of the IEEE Information Theory, Communications, Signal Processing,
and Computer Societies.

Maximilien Gadouleau (S’06–M’10) received the
M.S. degree in electrical and computer engineering
from Esigelec, Saint-Etienne du Rouvray, France, in
2004, and the M.S. and Ph.D. degrees in computer
engineering from Lehigh University, Bethlehem, PA,
in 2005 and 2009, respectively.

From 2009 to 2010, he was a Postdoctoral
Researcher with the Université de Reims Cham-
pagne-Ardenne, Reims, France. In 2010, he joined
the School of Electronic Engineering and Computer
Science at Queen Mary, University of London,

London, U.K., as a Postdoctoral Research Assistant. His current research inter-
ests are coding theory, network coding, and cryptography, and their relations to
combinatorics and graph theory.

Dr. Gadouleau is a member of the IEEE Information Theory Society.

Ying Wang (S’00–M’06) received the Ph.D. degree
in electrical and computer engineering from the Uni-
versity of Illinois at Urbana-Champaign, Urbana, IL,
in 2006.

Currently, she is a Staff Engineer with the New
Jersey Research Center of QUALCOMM Corporate
Research and Development, Bridgewater, NJ. Her
research interests include wireless communications,
statistical signal processing, multimedia security and
forensics, and detection and estimation theory.

Bruce W. Suter (S’80–M’85–SM’92) received the
B.S. and M.S. degrees in electrical engineering and
Ph.D. degree in computer science from the Univer-
sity of South Florida, Tampa, in 1972 and 1988, re-
spectively.

In 1998, he joined the Technical Staff of the U.S.
Air Force Research Laboratory, Rome, NY, where he
was the founding Director of the Center for Integrated
Transmission and Exploitation (CITE). He has held a
visiting appointments at Harvard University and the
Massachusetts Institute of Technology. His previous

positions include academia at the U.S. Air Force Institute of Technology and
the University of Alabama at Birmingham, together with industrial positions at
Honeywell Inc. and Litton Industries. He is the author or coauthor of over 100
technical publications and the author of a widely accepted monograph, Multirate
and Wavelet Signal Processing (Academic Press, 1998). His current research
interests are focused on wireless computing networks and their applications to
signal and image processing.

Dr. Suter is a member of Tau Beta Pi and Eta Kappa Nu. He was the re-
cipient of the Air Force Research Laboratory (AFRL) Fellow, an AFRL-wide
award for his accomplishments in the theory, application, and implementation
of signal processing algorithms, the Arthur S. Flemming Award, a government-
wide award for his pioneering Hankel transform research, the General Ronald
W. Yates Award for Excellence in Technology Transfer for his patented Fourier
transform processor, and the Fred I. Diamond Award for best laboratory re-
search publication. He is a former associate editor of the IEEE TRANSACTIONS

ON SIGNAL PROCESSING.

