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Abstract—In this paper, we introduce a novel approach to
correct packet errors and packet losses in store and forward by
using binary error-correcting codes. Using a framework similar
to what has been proposed for error control in random linear
network coding, we investigate error control under two scenarios.
First, we show that the Hamming metric is suitable for error
control in the case of errors intrinsic to the network. Second, we
investigate the case of an adversary on the network who erases
and injects packets in order to corrupt the communication. Under
this setting, we show that error correction is performed using a
new metric, referred to as the modified Hamming metric. We
then investigate using constant-weight codes and linear codes for
error correction in store and forward. We thus show that the
traditional approach of indexing the packets in order to recover
their original order is a suboptimal restriction of our approach.

I. INTRODUCTION

Store and forward is the traditional means to transmit data
through a network. In this scheme, the intermediate nodes
simply retransmit the packets they receive towards their desti-
nations without combining them. The traditional techniques
to correct packet loss in store and forward include ARQ
and erasure codes based on Reed-Solomon proposed in [1],
[2], [3], [4]. The approach based on Reed-Solomon codes,
referred to as the traditional approach henceforth, distributes
a codeword amongst the packets, hence protecting against
packet loss. In order to recover the order of packets, a header
indicating the index of the packet in the message is added in
front of every packet.

In this paper, we propose a novel approach to correct errors
and packet losses in store and forward by using binary error-
correcting codes. We assume that the collection of packets,
referred to as the message, undergoes four possible modifica-
tions. We first assume that the packets are randomly permuted,
and hence do not arrive at the receiver’s end in the order they
were originally sent. This assumption is motivated by networks
whose topologies change over time, or where several routes
with unequal delays are available to transmit the data. Also, the
message can suffer from three types of packet modifications:
some packets can be lost due to fading or if some links fail,
some packets can be injected by an adversary, and others can
be corrupted by errors. We hence model the communication of
a message using store and forward as the transmission of the
set of packets, where the modifications of packets correspond
to set alterations. Using a correspondence between subsets of

a set and binary vectors, we then model communications using
store and forward as a binary channel with additive error.
Thus, error control for store and forward can be performed
using binary error-correcting codes. Although the Hamming
metric is appropriate in the case of modifications due to the
network, we also introduce an adversarial scenario where error
correction is done via a new metric, referred to as the modified
Hamming metric.

We then investigate using constant-weight codes, which is
equivalent to transmitting messages with the same number of
packets. Constant-weight codes have been widely studied due
to their numerous applications and their theoretical signifi-
cance (see [5] and [6] for comprehensive surveys). We show
that the traditional approach of packet loss protection based
on Reed-Solomon codes can be viewed in our model as using
a subclass of constant-weight codes, referred to as liftings of
Hamming metric codes. Therefore, the traditional approach
is a suboptimal restriction of our approach to the set of all
liftings.

Since the length of the binary codes proposed here increases
exponentially with the number of symbols in a packet, encod-
ing and decoding complexities could become an issue. In order
to tackle this, we finally investigate using linear codes for error
control in store and forward, as they have a low encoding
complexity and many classes of linear codes also have a low
decoding complexity. However, other practical issues arise
when using these codes. For instance, transmitting the all-zero
vector, which is a codeword in any linear code, would result in
sending an empty message. Other issues are also investigated,
such as the standard deviation and the maximum value of the
number of packets in a message.

Our approach offers many advantages, listed below. First,
it is based on a simple network protocol, store and forward,
where the intermediate nodes do not operate on packets. Our
approach is well suited for store and forward, as the error
control operations are done at the receiver’s end only. Second,
unlike ARQ schemes, our approach does not require any
feedback, and unlike fountain codes, we only transmit the
message once without combining packets. Third, our codes
have a higher rate than the erasure codes previously proposed.
Although the rate gain increases with the number of packets,
it is always positive even for a small number of packets,
and increases rapidly for a number of packets that is small
compared to the total number of possible packets. Fourth,
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unlike traditional methods which only protect against packet
losses, our approach also corrects packet injections and packet
errors. Hence the packets need not be coded against link errors,
and the data rate can be further increased. Fifth, our scheme
is universal, as it is always based on binary codes, regardless
of the alphabet or the length of the packets.

We remark that the framework introduced here is similar to
the one introduced in [7], [8] for error correction in random
linear network coding. However, the model for network coding
is defined only in terms of subspaces, while our model is
defined in terms of both subsets and binary vectors. This
allows us to take advantage of the structure of binary vector
spaces and of the wealth of results on binary error-correcting
codes. Also, the modified Hamming metric defined here has
similar properties to the injection metric defined in [8] for
network coding and both arise from adversarial scenarios.
However, the assumptions on the adversary in these two
scenarios are completely different.

The rest of the paper is organized as follows. Section II
introduces the operator channel model for store and forward,
the metrics used for error correction, and demonstrates how
binary codes can be used for that purpose. Section III then
investigates using constant-weight codes and compares it to the
traditional approach. Section IV discusses the implementation
issues of using linear codes. Finally, Section V sumarizes our
results and provides a list of possible extensions of our work.

Due to length restrictions, we have omitted all the proofs
in this paper.

II. CHANNEL MODEL AND METRICS

A. Channel model

For any positive integer g, we denote [¢] = {0,1,...,q—1}
henceforth. Note that we do not assume any underlying struc-
ture for [g]. Suppose a source wants to transmit a collection
of packets in [g]™, referred to as a message, to one or several
receivers across a network. The protocol used is store and
forward, where the intermediate nodes do not operate on the
packets they receive. We first assume that all network links and
nodes are error-free and that no packets are lost or injected,
hence all the packets sent by the source will be correctly
received by all the receivers. However, we also assume that the
packets may not be received in the order they were originally
sent. We remark that the information carried by the message
can only be a property of this message which remains invariant
after the modifications operated by the channel. Since the
order of packets in the original message is lost through the
communication, store and forward can thus be viewed as the
error-free transmission of only the set of packets, rather than
the ordered sequence of packets.

Let us now consider the case where the network is not
error-free, hence the original message may be modified due to
link errors, packet losses, malfunctioning nodes, an adversary
injecting packets maliciously, etc. All these modifications can
be viewed as alterations of the set of packets P € P([N]) sent
by the source, where N = g™ represents the total number of
possible packets and P(E) represents the power set of a set
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E. These alterations can always be expressed as products of
erasures and disclosures, where an erasure is the deletion of
an element in the subset, and a disclosure is the addition of a
new element into the subset!.

We now illustrate how message modifications lead to al-
terations of the corresponding set of packets. We consider
three basic alterations of the message. First, a packet loss
leads to either an erasure if no copy of the packet is being
transmitted on the network, or no alteration otherwise. Second,
the injection of a new packet leads to either a disclosure if
the newly added packet is distinct to the other packets in
the message, or no alteration otherwise. Third, a packet in
error can be viewed as a packet loss immediately followed
by a packet injection. Therefore, a packet error can lead to an
erasure, to a disclosure, or to both an erasure and a disclosure.

After € erasures and § disclosures, the received subset @
can be expressed as

Q= (P\E)UD, M

where E = QN P and D = Q\P have cardinalities € and 9,
respectively. Note that E' and D thus represent the packets lost
in the channel, and the error packets injected by the channel,
respectively. Equivalently, denoting A = PAQ = E U D,
where A denotes the symmetric difference between two sets,
(1) can be expressed as

Q = PAA, @

where |A| = e + ¢ is the cardinality of A. We thus model the
communication of a message using store and forward as an
operator channel, where the input P is a subset of [N] and the
output @ is a random subset of [N] related to P by (2), where
€ and & are upper bounded. We remark that the counterpart
of (1) for subspaces was given in [7, (2)], while (2) has no
counterpart for subspaces. This is due to the underlying group
structure of the power set which has no counterpart in the
projective space.

B. Metrics for correction of erasures and disclosures

The Hamming distance between two subsets P,Q €
P([N]), where Q is obtained from P after € erasures and
4 disclosures, is defined as du(P,Q) = € + 6 = |PAQ)|. The
Hamming distance clearly is a metric, and is the appropriate
metric for error correction when the sum of the number of
erasures and disclosures is upper bounded.

We now introduce a scenario where a different metric than
the Hamming metric is more appropriate for error correction
in store and forward. Suppose a source transmits packets to
a destination across a network, where an adversary wishes to
corrupt the communication is present. The adversary is capable

IFor random linear network coding, Kotter and Kschischang introduced the
terms “erasure’” and “error,” respectively, in order to describe the counterparts
of the alterations to subspaces [7]. However, the terms “erasure” and “dis-
closure” seem more appropriate, as a disclosure represents the gain of some
amount of information. Also, the terms of “errors and erasures” are commonly
referred to describe significantly different alterations to vectors or matrices.
Therefore, in order to avoid confusion, we shall use the terms “erasure” and
“disclosure” henceforth.
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of removing some packets transiting in the network and inject-
ing new packets into the network, however it cannot modify
the packets going through the network. In order to search for
malicious adversaries, a network monitor counts the injections
and the erasures of packets separately. If either counter crosses
a given upper bound, the communication will be invalidated.
Therefore, the adversary will make sure that both the number
of packets erased and lost are below the alarm bound. The
modified Hamming distance between P and () is thus defined
as dy (P, Q) = max{e, 6} = max{|P\Q|, |Q\P|}.

Lemma 1: The modified Hamming distance is a metric.

We have for all P,Q € P([N]),

which implies that these metrics are equivalent. By (3), the
problems of finding optimal codes in the Hamming metric and
in the modified Hamming metric are closely related, but not
necessarily equivalent. We remark that both metrics introduced
above are symmetrical in terms of erasures and disclosures.
However, there may be other scenarios for which asymmetrical
metrics are more appropriate for error control.

C. Encoding and decoding using binary codes

‘We now demonstrate how the channel model and the metrics
introduced for subsets in Sections II-A and II-B, respectively,
can be equivalently defined in terms of binary vectors. Any
subset P € P([N]) is uniquely represented by a binary vector
P = (pprla-">pN—l) € GF(2)N’ where bi = 1 if and
only if ¢ € P, or equivalently, supp(p) = P. Therefore, the
operator channel can be defined as a channel on GF(2)",
where the input p and the output q are related by

q=p+a, (€3]

where [supp(a) N supp(p)| = € and [supp(a)\supp(p)| = 4.
Note that |supp(a)| = wg(a) = e+4. Moreover, for all p,q €

GF(2)", we define the modified Hamming distance between

p and q as du(p, q) = 2du(p,q) + 3|wa(p) — wa(q)|. We
thus have

du(supp(p), supp(q)), )
dy(supp(p), supp(q)) (6)

du(p,q)
dv(p,q)

for all p,q € GF(2)". Therefore, error control in store
and forward can be treated a coding theory problem on
binary vectors with the Hamming metric or the modified
Hamming metric, depending on the considered scenario. We
describe below the encoding and decoding processes for the
transmission of a message using a binary code.

The encoding of a message when using a binary error cor-
recting code C C GF(2)V with cardinality M and minimum
Hamming distance d proceeds as follows. Suppose the source
wishes to send a word x € [M]. It first uses the encoding
mapping f from [M] to C to determine f(x) = ¢ € C.
Let ip < 71 < ... < ir_1 be the nonzero coordinates of c,
where L = wy(c). Then the message will consist of exactly
L packets x; € [g]™, where x; is the representation of the
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number i; in basis g. We remark that this encoding process
guarantees that the packets are in lexicographic order.

Suppose the channel has applied € erasures and § disclosures
to the original set of packets, where ¢ + § < %. The
decoding thus proceeds. The receiver obtains a different set
of L' packets, which after sorting into lexicographic order,
are denoted as y; € [g]", 0 < [ < L’ — 1. Viewing these
words as integers k; € [N], the receiver then determines
y € GF(2)N where supp(y) = {k; : 0 <[ < L' — 1}
Finally, the receiver applies the decoding algorithm for the
code C on y to determine c € C, and retrieves x = f~1(c).

In order to illustrate the encoding and decoding of packets
using binary codes, we consider the following example: ¢ = 2,
n = 3, and C is the (8, 4, 4) extended Hamming code. Suppose
x = (1000) € GF(2)*, then its corresponding codeword is
¢ = (100001101) and hence the message sent by the source
consists of the following 4 packets: xo = (000), x; = (100),
xg = (101), x3 = (111). If the packet x is lost during
transmission, then the receiver obtains y = (00001101). Using
the decoding algorithm for C, the receiver then determines the
orignial word x = (1000).

ITI. CONSTANT-WEIGHT CODES AND LIFTINGS

A. Constant-weight codes

In order to simplify the transmission protocol and to facili-
tate the decoding process at the receiver end, the source may
choose to send messages with a constant number of packets. In
the model introduced in Section II-C, this corresponds to using
a binary constant-weight code [5]. Constant-weight codes have
other advantages listed below.

First, the set of binary vectors with the same Hamming
weight is highly structured: when endowed with the Hamming
metric, it forms an association scheme, referred to as the
Johnson scheme [9], [10]. Constant-weight codes also have
many connections to other classes of codes, such as spherical
codes [6], binary codes [11], and constant-dimension codes
[12]. Because of these features, constant-weight codes have
attracted a lot of interest in the literature.

Second, by (3), (5), and (6), we have di(p, q) < 2dm(p,q)
for all p,q € GF(2)", and equality holds if and only
if they have equal Hamming weights. Hence the minimum
Hamming distance of a constant-weight code is equal to twice
its minimum modified Hamming distance, which is the largest
minimum Hamming distance once the minimum modified
Hamming distance is fixed. Constant-weight codes can thus be
used interchangeably for both scenarios previously considered.
The property above also implies that the combinatorial and
geometric properties of the Johnson scheme when endowed
with the Hamming metric are preserved when it is endowed
with the modified Hamming metric instead.

Third, let us denote the maximum cardinality of a binary
code of length N with minimum Hamming distance d as
An(N,d), and the maximum cardinality of a constant-weight
code of length N and weight L with minimum Hamming
distance d as Au(N, L,d). Clearly, Ag(N,d) > Au(N, L,d)
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for all 0 < L < N. Also, the Bassalygo-Elias bound [13], [11,
Ch. 17, Theorem 33] indicates that
(1)

AH(Na Lad) Z 2—NAH(Nad) (7)
for all 0 < L < N. Following Stirling’s formula, the binomial
coefficient (]}f) satisfies for all N and 0 < L < N [11, Chapter
10, Lemma 7],

oNH(}) - N - oNH()) o
VLA =) ~ <L) = V2rL(1 =)’ ®

where A = % and H()) is the binary entropy function. In

particular, for N even and L = %, (8) and (7) lead to

Ax(N, d)
V2N

and hence constant-weight codes with weight around half
their length form asymptotically optimal binary codes in the
Hamming metric. We now derive a similar result for the
modified Hamming metric.

Proposition 1: The maximum cardinality Ay (N, d) of a
binary code of length N with minimum modified Hamming
distance d and the maximum cardinality Apm(N,L,d) of a
constant-weight code of length N and weight L with minimum
modified Hamming distance d satisfy

< AH <Na %7d> < AH(Ny d)a (9)

—(N-l-l)\/WSAM N, Z.d) < Au(N,d).  (10)

Thus constant-weight codes form asymptotically optimal
codes for both metrics. As a corollary, there exist codes which
are nearly optimal for both metrics. However, codes that are
simultaneously optimal for both metrics do not necessarily
exist.

B. Liftings of Hamming metric codes

Fourth, constant-weight codes are related to Hamming met-
ric codes over larger alphabets through the lifting operation,
described below.

Definition 1: Let L, M > 1 and X =
(X0, X1,...,Xr-1) € [M]L. Representing each coordinate
X, into a binary vector X; = (Z4,0,%4,1,--.,%s,M—1) Where
supp(x;) = X, the lifting of X, denoted as I(X), is the
vector in GF(2)LM obtained by concatenating all the L
vectors X;.

Note that since the vector x; has Hamming weight 1 for
all 0 <4 < L -1, I(X) has Hamming weight L. We remark
that although the original word X can have coordinates over
any alphabet, its lifting I(X) is always a binary vector. The
distance between two liftings is related to the distance between
the original words below.

Lemma 2: For all X, Y € [M]F, dg(I(X),I(Y)) =

The definition of lifting is naturally extended to codes in
[M]E as follows: I(C) = {I(X) : X € C}. Lemma 2
establishes a strong relation between an M-ary Hamming
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metric code and its lifting, which is a constant-weight code.
This relation is summarized in Proposition 2 below.

Proposition 2: Let C be a code in [M]L with minimum
Hamming distance d, then its lifting I(C) is a constant-weight
code in GF(2)ML with weight L and minimum Hamming
distance 2d.

We now compare our subset approach to the traditional
way of transmitting data across a channel which permutes
the packets. Let the source send a message of L packets
in [g]", which is viewed as a binary vector p € GF(2)N
with Hamming weight L. By definition, our approach chooses
amongst all (YY) such vectors. However, in the traditional
approach, the source adds a header to the packets indicating
their index in the original order for the receivers to determine
the original order of packets. Proposition 3 indicates that such
a message corresponds to the lifting of some word.

Proposition 3: A message of L packets in [¢]™ transmitted
using the traditional method corresponds to the lifting of a
word in [¢"~M1]E, where | = log, L.

Conversely, it is easily shown that any lifting corresponds
to a message where the header gives the index of the packet.
Therefore, the traditional index method restricts itself to the set
of all liftings. Since there are L packets in every message, the
header takes [/] symbols, leading to a total overhead of L [I]
symbols. Therefore, only gL~ < (ﬂ)L < (M) vectors
ym » Yy aq = \T L
can be obtained through the traditional index method. Thus,
the traditional approach only considers a proper subset of all
vectors with weight L and is hence suboptimal.

We want to emphasize the gain in terms of data rate
of our binary approach over the traditional approach by
comparing their respective asymptotic rates. We remark that
the asymptotic rates of constant-weight codes and Hamming
metric codes are still unknown for all minimum distances
[11]. Therefore, the gain cannot be derived for all possible
minimum distances. Instead, we only consider the alphabets
on which these codes are based, which is equivalent to setting
the minimum distance to 1. Although this is only a special
case, we believe it provides an interesting insight on the rate
improvement obtained by using the binary vector approach
over the traditional approach. Thus consider the combinatorial
rates Ry(L) = JJ—)"’ggnL , Ry(L) = LI of the binary
approach and of the traditional approach, respectively. We also
introduce the gain

Ry(L)  log, (IZ)

L) =RaT) = T -11])

of the binary approach over the traditional approach. Proposi-
tion 4 determines the asymptotic form of the gain, denoted as
g(A) = imy_,00 G(AN), where X = £.

Proposition 4: The asymptotic gain of the binary approach
over the traditional approach, where all messages consist of L
packets in [g]™ is given by

_HM _ ., (1-Nlog(1-X)
IN =~z x = Aog, A

where \ = % and H(X) is the binary entropy function.

an

(12)
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A

Fig. 1. Asymptotic gain of the binary approach over the traditional approach.

The gain g(\) is plotted in Figure 1 for A ranging from 0
to 1. Recall that the parameter A represents the ratio of the
number of packets in a message over the number of possible
packets in [g]™. We remark that the range of X can be split into
two regions. The first region, where A is low, represents the
case where the messages consist of a small number of large
packets. The other region, where )\ is high, represents the case
where many small packets are transmitted in each message. It
is clear from Figure 1 that our approach, although it always
improves upon the traditional approach, is more suitable for
the second region. When A approaches 1, the index in the
traditional approach covers nearly the whole packet, and hence
the rate R;(L) tends to 0 and the gain of the binary approach
tends to infinity.

The binary approach is more efficient for large values
of \; however, small values of A\ more typically occur in
applications. Nonetheless, we remark that because g(A) has
an infinite derivative at 0, the gain increases rapidly for small
values of A, hence our approach offers non-negligible gain,
even for very small values of A. In order to illustrate this
gain for small values of A, suppose the source wishes to send
L = 64 packets of 16 bytes, i.e. N = 2128 and A\ = 27122,
Then the total number of bits sent is L log, N = 8192, and the
number of useful bits sent using the the traditional approach
is given by L(log, N — log, L) = 7808, while the number of
useful bits sent using the subset approach is 7892. Therefore,
our approach saves 84 bits, hence nearly a whole packet.

IV. LINEAR CODES

As shown in Section II-C, any binary code can be used for
error control in store and forward. In Section III, we described
the advantages and issues of using constant-weight codes.
In this section, we focus on linear codes instead. The main
advantages of linear codes are the ease of encoding and the
fact that many classes of linear codes have efficient decoding
algorithms as well. This is particularly desirable, as the code
length increases exponentially with the length n of the packets.
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However, a practical issue arises when using linear codes, as
described below.

Suppose the source wants to transmit a vector x € GF(2)%
using an (NN, K) linear code C with minimum Hamming dis-
tance d. The encoding function of C is a matrix multiplication:
¢ = x@G, where G is the generator matrix of the code.
According to Section II-C, the corresponding message consists
of wy(c) packets. In particular, if x = 0, then ¢ = 0 and the
transmitted message consists of wy(0) = 0 packet. In other
words, the source does not transmit anything, and hence the
receiver is unaware of the transmission.

If C is not a perfect code, then this issue can be solved
by transmitting xG + b instead, where b is not a codeword
(or, without loss of generality, b is a coset leader) at distance
greater than t = | 451 | from the code. We then have wy (xG+
b +a) > 0 for any x € GF(2)¥X and any a with weight no
more than ¢, and hence the messages always have a positive
number of packets. Note that this new encoding is equivalent
to using the code C+b, which has the same minimum distance
and the same distance distribution as C. On the other hand, if
C is a perfect code, then no such vector b exists. However, we
remark that perfect linear binary codes exist for limited sets
of parameters only [11, Chapter 6, Theorem 33], and hence
most of the codes that would be used in our setting are not
perfect. Also, if such a code should be used, then selecting
a translate vector b with Hamming weight ¢ may reduce the
probability of obtaining an empty message at the receiver’s
end. Finally, if a large perfect code is used, then removing
one codeword from the codebook would make it non-perfect
with only a slight decrease in rate.

We now investigate some of the desirable properties of the
translate vector b and how to determine it once the property
is fixed. Note that for any linear code C and any coordinate
0 < i < N —1, then either all codewords in C have a 0 in
coordinate ¢ or one half have a 0 and the other half have a
1. In the first case, the coordinate ¢ is not coded and hence
need not be transmitted. Therefore, without loss of generality,
we assume the code C satisfies the following property: for
all 0 < i < N — 1, half the codewords in C have a 0 in
coordinate 7 and half have a 1. Also, we assume that C is not a
perfect code, and we denote the set of coset leaders of C with
weight greater than t as B(C). Since the distribution of the
number of packets received at the receiver’s end depends on
the distribution of the error patterns and hence on the channel,
we only consider the distribution of the number of packets in
a message sent by the source. This assumption is consistent
with our choice of studying constant-weight codes in Section
III, which is equivalent to considering a constant number of
packets in the messages sent by the source.

First, we remark that the average number of packets in a
message, given by u(b) = %I > cec wH(c + b), is indepen-
dent of b and is hence denoted by u. Denoting the weight
distribution of C as A; for 0 < ¢ < N, we have u = Eiio 1A;.

Second, one of the main advantages of using constant-
weight codes is the constant number of packets in all mes-
sages. In other words, the standard deviation of the number
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of packets in a message is equal to zero. Accordingly, the
translate vector b may be chosen as to minimize the standard
deviation of the number of packets in a message, so that
the receiver usually expects a number of packets that is
near the average. The minimum standard deviation of the
number of packets over all possible choices for b is given
by ¢ = minpep(c) o(b), where

a(b) = 1 Z (wa(c+b) — ,u)2.
Icl ceC

Proposition 5 below gives bounds on o.

Proposition 5: The minimum standard deviation o of a
linear code C C GF(2)"V with error correction capability ¢
satisfies

(13)

2
(t+1)2—'u—SaSmax{,u—t+1,N—,u}.

14
iC] (14)

by

We have o = ,/—ﬁﬁ,

minpep(c) Yocec WH(C + b)?. Therefore, the value of o can
be determined by solving the following binary linear program.
Denote the elements of B(C) as b; for 0 < i < |B(C)|—1 and
consider the vector s = (a(bg),a(b1),...,0(b|p(c)-1))-
Then o is the optimal solution of

where X =

min S X (15)
subject to 1-x=1 (16)
x € {0,1}BOI (17)

Finally, according to Chebyshev’s inequality [14], minimiz-
ing the standard deviation of the number of packets minimizes
the probability that the messages have a large number of
packets. Such restriction on the size of large messages can be
tightened by choosing b to minimize the maximum number of
packets in a message. This choice is equivalent to determining
m = minpep(c) MaXcec wH(C + b). By definitions of x and
m, we easily obtain that m > p. We remark that m can also
be viewed as the optimal solution of a linear program similar
to (17)-(19).

V. CONCLUSION

In this paper, we introduce a novel model for data trans-
mission using store and forward, where we demonstrate that
store and forward can be viewed as the transmission of binary
vectors. Therefore, the correction of packet errors, losses,
and injections can be performed using binary error-correcting
codes. We then investigate using two classes of binary codes:
constant-weight codes and linear codes. Constant-weight codes
have many desirable properties and allow us to demonstrate
that the traditional erasure codes, based on coding across
packets and indexing the packets in order to recover their
original order, form a suboptimal subclass of constant-weight
codes. Therefore, our approach offers a higher rate than the
traditional erasure codes. However, the high encoding and
decoding complexity of constant-weight codes make them dif-
ficult to implement in real-life applications. Linear codes, on
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the other hand, have low encoding and decoding complexity.
However, they suffer from different issues when used for error
correction in store and forward. These issues are introduced
and partially addressed in this paper.

The work in this paper can be extended in multiple ways.
First, our investigation of the implementation of binary codes
can be extended. Our study of constant-weight codes and
their relations to liftings of Hamming metric codes indicates
that a compromise between rate gain and low complexity is
desirable. Also, the issues arising when using linear codes
can be further investigated, hopefully leading to possible
implementation of these codes. Furthermore, specific classes
of linear codes, such as Hamming codes or Reed-Muller codes,
can be studied individually. Second, our transmission model
can be generalized in several fashions. This model focuses on
one-shot error correction, viewing each message as a codeword
of a binary code. Multi-shot error-correcting codes, where
a codeword consists of several packets, can offer a higher
rate gain. However, using multi-shot codes would lead to
another increase of complexity, hence another compromise
between rate gain and low complexity needs to be determined.
Our model is also based on block codes, while convolutional
techniques may be more advantageous in terms of complexity.
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