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Abstract—The guessing number of a directed graph (digraph),
equivalent to the entropy of that digraph, was introduced as a di-
rect criterion on the solvability of a network coding instance. This
paper makes two contributions on the guessing number. First, we
introduce an undirected graph on all possible configurations of the
digraph, referred to as the guessing graph, which encapsulates the
essence of dependence amongst configurations. We prove that the
guessing number of a digraph is equal to the logarithm of the inde-
pendence number of its guessing graph. Therefore, network coding
solvability is no more a problem on the operations made by each
node, but is simplified into a problem on the messages that can
transit through the network. By studying the guessing graph of a
given digraph, and how to combine digraphs or alphabets, we are
thus able to derive bounds on the guessing number of digraphs.
Second, we construct specific digraphs with high guessing num-
bers, yielding network coding instances where a large amount of in-
formation can transit. We first propose a construction of digraphs
with finite parameters based on cyclic codes, with guessing number
equal to the degree of the generator polynomial. We then construct
an infinite class of digraphs with arbitrary girth for which the ratio
between the linear guessing number and the number of vertices
tends to one, despite these digraphs being arbitrarily sparse. These
constructions yield solvable network coding instances with a rela-
tively small number of intermediate nodes for which the node op-
erations are known and linear, although these instances are sparse
and the sources are arbitrarily far from their corresponding sinks.

Index Terms—Cyclic codes, guessing games, network coding,
network design.

I. INTRODUCTION

N ETWORK coding [1] is a protocol which outperforms
routing for multicast networks by letting the intermediate

nodes manipulate the packets they receive. In particular, linear
network coding [2] is optimal in the case of one source; how-
ever, it is not the case for multiple sources [3], [4]. Although for
large dynamic networks, good heuristics such as random linear
network coding [5], [6] can be used, for a given static network
maximizing the amount of information that can be transmitted
is fundamental. Solving this problem by brute force, i.e., con-
sidering all possible operations at all nodes, is computationally
prohibitive. In this paper, we reduce this problem to finding a
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maximum independent set in an undirected graph determined
by the network coding instance.

Network coding also opens many new questions about net-
work design (see [7], [8] for examples of networks with inter-
esting properties). Clearly, dense graphs with a large number of
edges between the nodes can transmit a large amount of infor-
mation; similarly, a small diameter is a good property for infor-
mation transfer; finally, a large number of intermediate nodes
between the sources and the sinks is preferable. However, in
this paper, we introduce classes of networks that are arbitrarily
sparse, with arbitrarily high diameters, and with a relatively
small number of intermediate nodes, yet on which all the re-
quested information can be transmitted. Furthermore, for these
graphs, the demands of the sinks can be satisfied over any al-
phabet, and linear combinations are sufficient. Therefore, our
work provides different guidelines on the design of networks
which take advantage of network coding. The results in this
paper are based on the study of the guessing number of digraphs,
reviewed below.

The guessing number of digraphs is a concept introduced
in [9], which connects graph theory, network coding, and cir-
cuit complexity theory. In [9] it was proved that an instance of
network coding with sources and sinks on an acyclic net-
work (referred to as a multiple unicast network) is solvable over
a given alphabet if and only if the guessing number of a re-
lated digraph is equal to . Moreover, it is proved in [9], [10]
that any network coding instance can be reduced into a mul-
tiple unicast network. Therefore, the guessing number is a di-
rect criterion on the solvability of network coding. Similarly,
the linear guessing number evaluates the solvability of a net-
work coding instance by using linear combinations only. By
determining these two quantities, the performance of linear net-
work coding can then be compared to that of general network
coding. In [11], the guessing number is also used to disprove
a long-standing open conjecture on circuit complexity. In [12],
the guessing number and linear guessing number of digraphs
were studied, and bounds on the guessing number of some par-
ticular digraphs were derived.

The guessing number is equal to the entropy of the same di-
graph [11], thus tying this quantity with fundamental problems
of information theory. For instance, by relying heavily on [13],
[14] and [15], it was shown that the entropy of a digraph might
not be determined by the use of Shannon inequalities alone
[16]. Similarly, the information defect is related to the so-called
public entropy [16]. We would like to emphasize that the graph
entropy for digraphs considered in this paper is fundamentally
different to the graph entropy for undirected graph introduced
by Körner in [17] (see [18] for a review of that quantity).
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Let us give a brief description of the guessing game with
players, viewed as vertices on a digraph , and an alphabet of
size . All the players are assigned an element of the alphabet
(collectively referred to as a configuration), and each player
knows the values assigned to all the players in its in-neighbor-
hood. It does not, however, know its own value, and the goal of
the game is to guess it correctly. Clearly, the values cannot all
be guessed correctly every time. If the players do not collabo-
rate, the probability that all guesses are correct is exactly .
However, the players may elaborate a collaborative strategy (re-
ferred to as a protocol) which increases the probability of suc-
cess. For instance, suppose we play the game on the clique ,
where each player knows the values assigned to all the other ver-
tices. A common strategy could be the following: each player
guesses the opposite of the sum (modulo ) of all the values
it sees. Any configuration whose sum modulo is zero will
be correctly guessed, hence raising the success probability to

(this is, in fact, optimal). The guessing number
is then defined as the maximum over all protocols of the gain
from the trivial guessing strategy. For instance, the guessing
number of the clique on vertices is .

Suppose now the players have a helper, whose aim is to make
all players guess correctly every time. This helper is limited: he
or she can only send the same information to all the players.
The information defect is defined to be the minimum amount of
information the helper must send, and it is strongly connected
to the guessing number. For instance, in , the players will
be able to infer their own value if the helper sends them the
sum of all values modulo . Only one symbol of information
is required; therefore, the information defect of the clique on

vertices is equal to 1. While the guessing number
represents the amount of information that can be guessed by
the players, the information defect is the amount of
common information the players need to guess correctly. The
information defect is shown in [8] to be equal to the length of a
minimal index code induced on the graph (see [19] for more
on index coding and its relation to network coding).

This paper has two main contributions. First, we introduce a
graph on all the possible configurations of a digraph, referred
to as the guessing graph, which encapsulates the dependen-
cies amongst fixed configurations of the same protocol. We then
show that the guessing number of a digraph is equal to the log-
arithm of the independence number of its guessing graph. The
study of the guessing graph then yields the following results.

• Solvability of network coding is no more a problem of de-
termining the appropriate operations at each intermediate
node. It is now turned into a problem on the possible mes-
sages that could be transmitted through the network by
using network coding, and the operations which transmit
these messages can then be easily determined. This simpli-
fication significantly reduces the search space, which only
depends on the number of nodes in the graph and on the
alphabet size.

• The problem of solvability of network coding is reduced to
a decision problem on the independence number of undi-
rected graphs. Although the guessing graph has an expo-
nential number of vertices, it has a large automorphism
group, which could be taken advantage of. We show that

finding maximum independent sets on this graph is actually
a problem closely related to the design of error-correcting
codes. This parallels the results in [20], where it was shown
that some classes of network coding instances are solvable
if and only if codes with certain parameters exist.

• Using graph theoretic results, we are then able to provide
chains of bounds on the guessing number of a digraph
based on the properties of its guessing graph. For instance,
we obtain that for large enough alphabets, the guessing
number is at least equal to the minimum in-degree of a
vertex in the digraph, and the fixed configurations attaining
this bound form an MDS code.

• The relationship between the guessing game and public in-
formation (or equivalently, between public and private en-
tropy) unveiled in [11] is clarified, as we show that the in-
formation defect is equal to the chromatic number of the
guessing graph. This enables us to prove that these prob-
lems are asymptotically equivalent.

• The guessing graph is extremely well-behaved when di-
graphs are combined. We exhibit some types of digraph
union which do not increase the ratio between the guessing
number and the number of vertices in the digraph. Also,
the guessing graph illustrates the relationships between the
guessing numbers of the same digraph over different alpha-
bets. We prove that playing the guessing game on a digraph
over an extension field is equivalent to playing the guessing
game on several copies of the same digraph linked to one
another over the base field.

We would like to emphasize the fundamental difference be-
tween our work and the literature where conflicts in networks
were represented as adjacent vertices in graphs [21]–[23]. In
the literature, the vertices of the different graphs and hyper-
graphs previously proposed are routes or links amongst nodes or
coding functions instead of messages or configurations. There-
fore, these do not convert the network coding problem into a
problem on messages. Indeed, the vertices of the so-called “link
graph” in [21] are the routes from the inputs to the outputs, and
two routes conflict if they intersect. Also, the vertices corre-
spond to the cumulative coding functions at each node in [22],
and the conflicts amongst functions are represented via a hyper-
graph. Moreover, the vertices of the so-called “conflict graph”
in [23] represent a node in the network along with part of its
out-neighbors.

The second contribution is the construction of specific di-
graphs with high linear guessing numbers, thus yielding solv-
able network coding instances.

• For a finite number of source-sink pairs, we introduce a
construction of digraphs based on cyclic codes, thus tying
another link between network coding and error-correcting
codes. All the information about the digraph, and espe-
cially its guessing number, are available from the generator
polynomial of the code. In particular, the class of digraphs
generated by the simplex codes produce network coding
instances with bottlenecks on the order of only.

• For unbounded parameters, we determine a way of com-
bining two digraphs, referred to as the strong product,
which takes full advantage of the structure of the two
original digraphs in order to yield a high guessing number.
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Using this technique, we construct network coding in-
stances as sparse as possible in terms of edges provided the
number of edges tends to infinity, where the shortest path
between a source and the corresponding sink is arbitrarily
long, and where the number of intermediate nodes is small
compared to the number of sources. These instances are
solvable over any alphabet and linearly solvable over any
field.

The rest of the paper is organized as follows. Section II re-
views some necessary background on graph theory, guessing
games, and error-correcting codes. Section III introduces and in-
vestigates the properties of the guessing graph. In Section IV, we
introduce a class of digraphs based on cyclic codes for which we
determine the binary linear guessing number. Section V studies
the maximum guessing number of digraphs and introduces fam-
ilies of graphs with asymptotically highest guessing numbers.
Finally, Section VI provides some comments and presents some
open problems.

II. PRELIMINARIES

A. Graphs and Digraphs

An independent set in a graph is a set of vertices where any
two vertices are nonadjacent. The independence number
of an undirected graph is the maximum cardinality of an in-
dependent set. We also denote the maximum degree and the
clique, chromatic, and fractional chromatic numbers of an undi-
rected graph as , and , respectively
(see [24] for definitions of these parameters). For a connected
vertex-transitive graph which is neither an odd cycle nor a com-
plete graph, we have [24, Corollary 7.5.2]

Also, it was shown in [25] that for a noncomplete -connected
graph on vertices which is regular with degree , the indepen-
dence number is lower bounded by

(1)

The chromatic number and the independence number of a
vertex-transitive graph are related by [26] (using the no-homo-
morphism lemma in [27])

(2)

We now review four types of products of graphs; all products
of two graphs and have as vertex set.
We denote tow adjacent vertices and in a graph as .

• First, in the co-normal product , we have
if and only if or . We

have

(3)

• Second, in the lexicographic product (also called compo-
sition) , we have if and only if
either and , or . Although this
product is not commutative, we have

• Third, in the strong product , we have
if and only if either and , or
and , or and .

• Fourth, in the cartesian product , we have
if and only if either and

, or and . We have

Throughout this paper, we shall only consider simple di-
graphs, which have no loops and no repeated edges. However,
we do allow edges in both directions between two vertices,
referred to as bidirectional edges (we shall abuse notations and
identify a bidirectional edge with a corresponding undirected
edge). In other words, the digraphs considered here are of the
form , where . We
shall denote the number of vertices of the digraph as unless
otherwise specified. The adjacency matrix of a digraph

on vertices is the binary matrix such that
if and only if . For any vertex of , its
in-neighborhood, denoted as , is the set of all vertices

such that , and its in-degree is the size of
its in-neighborhood. We say that a digraph is strong if there is
a path from any vertex to any other vertex of the digraph. An
independent set of vertices in a digraph is a set such that no
vertex is in the in-neighborhood of another.

The girth of a digraph is the minimum length of a directed
cycle (we consider a bidirectional edge as a cycle of length 2). A
digraph is acyclic if it has no directed cycles. In this case, there
is an order of the vertices , referred to as the
topological order, for which only if (in
particular, has in-degree 0). The cardinality of a maximum in-
duced acyclic subgraph of the digraph is denoted as .
It can be easily shown that , where is the
maximum in-degree of a vertex in .

B. Guessing Game and Guessing Number

We denote the ring or the field
if is the power of a prime as . A configuration on

a digraph is a map from its vertex set to , which we
shall identify with its image . A pro-
tocol on is a mapping between its configurations such that

is locally defined, i.e., ,
where and for all . For any

, we refer to the word
where the s are sorted in increasing order and are all in as .
Using this notation, we have . The fixed
configurations of are all the configurations such that

. The guessing number of is then defined as the
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logarithm of the maximum number of configurations fixed by a
protocol of

This definition actually depends on , and we can also consider
the general guessing number .

A protocol is said to be linear if the local functions are linear:
for some . The

fixed configurations of a linear protocol form a linear subspace
of . The linear guessing number of is the maximum
dimension of the set of fixed configurations of a linear protocol
of . It is shown in
[12, Theorem 4.3] that the linear guessing number is given by

(4)

where if and only if implies . Clearly,
we have for all digraphs .

A set of public messages is a is a partition of the
set of configurations into pieces of the form ,
i.e., . The information defect
of the digraph is defined as the logarithm of the min-
imum cardinality of a set of public messages, and is de-
noted as . It was shown in
[11] that for any digraph on vertices and any

. We also consider the general in-
formation defect .

C. Relation Between Guessing Games and Network Coding

We now review how to convert a multiple unicast problem
in network coding to a guessing game. Note that any network
coding instance can be converted into a multiple unicast without
any loss of generality [10], [11]. Let be an acyclic network
with sources, sinks, and some intermediate nodes. We sup-
pose that each sink requests an element from an alphabet
from a corresponding source. This network coding instance is
solvable over if all the demands of the sinks can be satisfied
at the same time. We assume the network instance is given in its
circuit representation, where each vertex represents a distinct
coding function, and hence, the same message flows every edge
coming out of the same vertex. This circuit representation has

source nodes, sink nodes, and intermediate nodes. By
merging each source with its corresponding sink node into one
vertex, we form the digraph on vertices. In general,
we have for all and the original network coding
instance is solvable over if and only if [11].
Similarly, we have and the instance is solvable
if and only if [11].

Therefore, while network coding considers how the informa-
tion flows from sources to sinks, the guessing game captures the
intuitive notion of how much information circulates through the
digraph. A protocol for the guessing game is equivalent to the
network coding operations in the original instance. Since all net-
work coding instances can be turned into a guessing game, the
guessing game is a fundamental problem in information transit
in networks. Conversely, if a digraph on vertices has
an acyclic induced subgraph of size , then the vertices

Fig. 1. Butterfly network as a guessing game. (a) Circuit representation;
(b) guessing game.

outside can be split in two to form the circuit representation
of a network coding instance with sources, sinks, and in-
termediate nodes.

We illustrate the conversion of a network coding instance
to a guessing game for the famous butterfly network in Fig. 1
below. We shall show the vertices corresponding to the source-
sink pairs in bold with thick contours henceforth. It is well-
known that the butterfly network is solvable over all alphabets
(by adding the two incoming messages modulo in ), and con-
versely it was shown that the clique has guessing number 2
over any alphabet (and the protocol is simple: all nodes guess
minus the sum modulo of their incoming elements).

D. Error-Correcting Codes

The weight of a word in is the number of nonzero sym-
bols of and is denoted as . A code of length over
with minimum Hamming distance is a set of words in
such that any two words differ in at least positions. We denote
the maximum cardinality of such a code as . The Sin-
gleton bound asserts that , and this bound is
achieved by Maximum Distance Separable (MDS) codes. MDS
codes are known to exist for or when is the power
of prime and satisfies either or

[28, Chapter 11, Section 7].
A binary linear code is a linear subspace of

with dimension . If is the row span of a matrix
, we say that is a generator matrix of .

Moreover, if is the row space of a matrix
of rank , we say that is an extended generator matrix of

. Alternatively, if is the dual space of the row space of a
matrix (resp., with rank

), we say that is a parity-check matrix (resp., extended
parity-check matrix) of . By definition, we have
for all .

A (binary) cyclic code is a linear binary code where all the
cyclic shifts of a codeword are also codewords. To any vector

, we associate the polynomial
. A cyclic code can then be viewed as an

ideal in the ring of polynomials modulo , where is
the length of the code. Therefore, a cyclic code is composed
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of all the multiples of a generator polynomial of degree
, where is the dimension of the code. A generator matrix

for the code is hence given by shifts of . Remark that a
polynomial generates a cyclic code of length if and only if it
divides .

A constant-weight code is a binary code consisting of code-
words with the same Hamming weight. They have attracted a
large interest; a thorough survey is provided in [29], and various
upper bounds are derived or reviewed in [30]. The maximum
cardinality of a constant-weight code of length , weight , and
minimum distance (as it is always even) is upper bounded by

[31].

III. THE GUESSING GRAPH OF A DIGRAPH

A. Guessing Graph, Guessing Number, and Information Defect

In this section, we introduce an undirected graph on all pos-
sible configurations of a digraph, where an independent set cor-
responds to a set of fixed configurations of a protocol. As a re-
sult, the guessing number of the digraph is equivalent to the log-
arithm of the independence number of the associated graph.

Definition 1 (Guessing Graph of a Digraph): For any digraph
on vertices and any integer , the -guessing graph of

, denoted as , has as vertex set and two config-
urations are adjacent if and only if there is no protocol for
which fixes them both.

Proposition 1 below enumerates some properties of the
guessing graph. In particular, Property provides a concrete and
elementary description of the edge set which makes adjacency
between two configurations easily decidable.

Proposition 1: The guessing graph of a digraph
on vertices satisfies the following properties:

1) It has vertices.
2) Its edge set is , where

.
3) It is regular with degree

where is the union of all the in-neighborhoods of
vertices in .

4) It is vertex-transitive. More particularly, for any ad-
jacent configurations

, we have:
• for any ;
• for any ;
• if is the power of a prime,

for any family
of nonzero scalars .

Proof: Property 1 follows Definition 1. Let us prove Prop-
erty 2. Let for some and let a protocol with local
functions fix . Then

; hence, does not fix . Conversely, if then any
protocol satisfying and
for all fixes both and .

Property 4 follows this observation: if and only if
and for some . Since the guessing

graph is vertex-transitive it is regular, and hence, we determine
the number of edges adjacent to the all-zero configuration 0. By
the inclusion-exclusion principle, we have

where , and hence, we only have to determine
for all . The configurations adjacent to 0

satisfy and , while is
arbitrary. If is not independent, and the two
conditions are contradictory; otherwise and
there are choices for .

The guessing graph of some particular digraphs can be
characterized.

Example 1: The following guessing graphs are easy to
determine.

• The guessing graph of an acyclic digraph is the complete
graph.

• The guessing graph of the clique is given by the Ham-
ming graph , where two configurations are adjacent
if and only if they are at Hamming distance 1.

• In the guessing graph of the directed cycle , two con-
figurations are adjacent if and only if they are at Hamming
distance at most .
Proof: If is acyclic, let us sort the vertices in topological

order, so that . Consider two dis-
tinct configurations , and let ,
then and .

We now determine the guessing graph of the clique . We
have , and
hence, and are adjacent if and only if they differ in exactly
one coordinate.

We now consider the cycle , whose edge set is given by
. Suppose and are

distinct and nonadjacent, then there exists such that .
Since , we have . Applying this
recursively, we obtain that all coordinates of and must be
distinct. Conversely, if for all , then it is clear that
and are not adjacent.

Clearly, a set of fixed configurations of some protocol forms
an independent set in the guessing graph. Theorem 1 below as-
serts the converse: any independent set can be fixed by some
protocol and hence can be viewed as a set of possible trans-
mitted messages on the original network.

Theorem 1: A set of configurations in are fixed configu-
rations of some protocol for if and only if they correspond to
an independent set in the graph , and hence
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Moreover, a set of configurations in are a set of public mes-
sages if and only if it forms a coloring of the guessing graph

, and hence

Proof: By definition, any set of fixed configurations of
some protocol form an independent set in the guessing graph.
Conversely, if is an independent set of the guessing
graph, we shall construct a protocol which fixes all con-
figurations. For , we define the local functions

as follows: and
if there is no such that . Note that this

is a nonambiguous assignment, as either
(and the assignments are independent) or
and (the same assignment) for all

.
Finally, since a set of public messages is a partition of

into sets of fixed configurations, it is equivalent to a coloring of
the guessing graph.

The guessing numbers of the digraphs mentioned in Example
1 were already determined in [11] or [12]. However, the proof
becomes straightforward using Theorem 1.

Example 2: If is acyclic, then and
for all . This can be intuitively explained as follows: since

the digraph has no cycle, no information can circulate around
it. Also, the clique satisfies ,
which means that the symbols of information received
by any vertex can circulate around the digraph. Finally, for the
directed cycle we have , since
one symbol of information naturally circulates along the cycle.

In order to illustrate the relevance of this result to network
coding, we return to the butterfly network example given in
Fig. 1. We already showed that it was equivalent to a guessing
game on the clique . Its binary guessing graph, given by the
cube , is illustrated in Fig. 2. Throughout this paper,
we shall represent the configurations in rectangular vertices and
shall highlight a maximum independent set in bold with thick
contours.

B. Results Based on the Guessing Graph

We now investigate the properties of the guessing graph and
thus derive bounds on the guessing number and on the informa-
tion defect of digraphs. We first show in Proposition 2 below
that the general guessing number and the general information
defect of a digraph are equivalent. From a guessing game per-
spective, this shows that the minimum amount of information
required to guess everything correctly is exactly equal
to the amount of information that is not inferred by the players

.

Proposition 2: For any digraph , we have .
Proof: The bounds on the chromatic number and the in-

dependence number of a vertex transitive graph in (2) yield
and for

which asymptotically yields .

Fig. 2. Butterfly network as a maximum independent set problem. (a) Circuit
representation; (b) guessing game on � ; (c) maximum independent set in the
guessing graph ��� � �� � ������.

Remark that the equality may not
hold for all digraphs and every (e.g., the undirected pentagon
over alphabets with nonsquare [11]). However, it does hold for
every for the digraphs considered in Examples 1 and 2.

The following proposition gives a lower bound on the
guessing number based on the degree of the guessing graph,
which shall be refined for large alphabets in Proposition 5.

Proposition 3: For any nonacyclic digraph with minimum
in-degree and any

Proof: Since the guessing graph is vertex-transitive, its
connectivity is at least by [32]. By applying the first in-
equality in (1), we easily obtain the first lower bound above.
Call this term ; the second inequality in (1) yields

. We have ,
where as seen in the proof of
Proposition 1, and hence, . The second
lower bound then follows.
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If is a spanning subgraph of , then it is easy to verify
that , and hence, . Intu-
itively, is obtained from by removing edges; hence, less in-
formation can circulate. On the other hand, the guessing graph
of any induced subgraph can be viewed as a subgraph of the
guessing graph of . For any induced subgraph of and
any , we denote the subgraph of induced
by all configurations satisfying as .

Lemma 1: For any induced subgraph of and any
, we have .

Proof: Two configurations are adjacent in
if and only if there exists such that

. Since , this is equivalent to
, and hence, and are

adjacent in .

Corollary 1: We have , where
denotes the maximum size of an acyclic induced sub-

graph of .
Proof: Let be a maximum induced acyclic subgraph of

, then , which by Example 1 is a
clique on vertices.

The proof of Corollary 1 actually indicates that the family
for all forms a partition of

the vertex set of into cliques of size .
Proposition 4 below combines the results derived above with

the graph-theoretic results reviewed in Section II-A.

Proposition 4: For any nonacyclic digraph and any

A code with Hamming distance can be viewed as an
independent set of the graph where two words are adjacent if
and only if they differ by at most coordinates. Therefore,
finding a maximum code with a prescribed minimum distance
can be viewed as finding the maximum independent set of this
graph. On the other hand, as seen in Proposition 1, whether
two configurations are adjacent in the guessing graph is com-
pletely determined by the coordinates in which they differ.
Therefore, determining the guessing number of a digraph is a
similar problem to that of finding error-correcting codes with
maximum cardinality. In particular, Example 1 indicates that
the guessing number of the clique (the directed cycle ,
respectively) is equivalent to the maximum cardinality of a code
of length with minimum distance 2 (minimum distance , re-
spectively). Proposition 5 generalizes this property by viewing
a set of fixed configurations as a code, and by bounding its
minimum distance.

Proposition 5: If is a digraph with minimum in-degree
and girth , then

Fig. 3. Digraphs� and� and their guessing graphs. (a)� ; (b)��� � �� �
������; (c) � ; (d) ��� � �� � � .

In particular, for the power of a prime and either
or , and for some

.
Proof: First, for any two configurations adja-

cent in the guessing graph of , we have for
some , and hence, . Therefore, in
any code with minimum distance , the codewords are
not adjacent in the guessing graph, and hence, they form a set
of fixed configurations.

Conversely, let be two distinct configurations
which are not adjacent in the guessing graph, and denote

so that . Suppose
is acyclic, then is a clique by Example 1, and by

Lemma 1, is also a clique, and hence,
and are adjacent in . This is a contradiction, thus
contains a cycle and its cardinality is no less than the girth of

. Therefore, the set of fixed configurations of any protocol is
a code with minimum distance at least .

Since any code with minimum Hamming distance
forms a set of fixed configurations, using an MDS code yields
the lower bound for the mentioned parameter
values.

Proposition 5 implies that for large enough alphabets, the
smallest amount of information received by any vertex can
circulate through the network.

C. Combining Two Graphs

We now investigate how to combine two digraphs and
with disjoint vertex sets. We consider three different types

of digraph union, each leading to a different graph product of
their guessing graphs. We shall illustrate these unions by the
following example: and illustrated in Fig. 3.

First, the disjoint union of and , denoted as ,
has as vertex set and as edge
set. Its adjacency matrix is hence given by



6710 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 10, OCTOBER 2011

Fig. 4. Disjoint union of � and � and its guessing graph. (a) � � � ,
(b) ��� � � � �� � �������� .

In other words, the digraphs are simply placed next to each
other, without adding any edges. For any with vertex set

, we have , and hence,
the guessing number of the disjoint union of and is a
lower bound for the guessing number of . In [12, Lemma 3.2],
it is shown that the (linear) guessing number of the disjoint union
of two digraphs is equal to the sum of their (linear) guessing
numbers. We give an alternate proof below for the nonlinear
case by considering the guessing graphs.

Proposition 6: For all digraphs with disjoint vertex
sets and any

(5)

where denotes the co-normal product, and hence,
.

Proof: Let and be two configurations on , and
denote (and similarly for ). They are
adjacent in if and only if there exists in
or in such that and . Since the
neighborhood of entirely lies in if (and similarly
for ), this is equivalent to or

. Therefore, this is equivalent to
in or in , which yields (5).

Finally, (3) gives the guessing number of the disjoint union.

Example 3: The guessing graph of the disjoint union of
and is illustrated in Fig. 4 below (we represent the configu-
rations in hexadecimal form). Because it is a very dense graph,
we only show which configurations are adjacent to the all-zero
configuration. It is clear that , and hence,

.
As a corollary of Proposition 6, we now give lower bounds

on the guessing number of a digraph by considering the sum

of guessing numbers of its induced subgraphs. We refer to a
clique partition as a partition of the vertex set of a digraph into

subsets such that the graph induced by each subset forms a
clique. The clique partition number of a digraph , denoted as

, is the minimum number of subsets in any clique partition
of . Then it is easily shown that ,
which actually refines the lower bound in [12, Theorem 3.3] for
graphs with bidirectional edges.

We strengthen the result on the guessing number of the dis-
joint union below by considering the unidirectional union of
and , denoted as , and defined to be
with and

. Its adjacency matrix is given
by

In other words, we make all the possible connections, but only
from to .

Proposition 7: For all with disjoint vertex sets and
any

where is the lexicographic product, and hence,
. Also, we have

.
Proof: The proof for the guessing number is similar to that

of Proposition 6, and is hence omitted. We hence prove the result
for the linear guessing number. For any , we have

where and . Therefore

(6)

and hence
by (4). Furthermore, if , we have equality in (6), and
hence, we can easily prove the reverse inequality.

Example 4: The guessing graph of the unidirectional union
of and is illustrated in Fig. 5 below. Because it is a very
dense graph, we only show which configurations are adjacent to
the all-zero configuration. Although it is distinct to the guessing
graph of the disjoint union, they both have the same indepen-
dence number.

Proposition 7 indicates that the edges from to do not
increase the guessing number and can hence be omitted. Intu-
itively, the edges only going in one direction, they do not create
any more cycles, and hence, no more information can circulate
through the whole digraph. If we apply this simplification re-
cursively, we obtain that the guessing number of a digraph is
completely determined by the guessing numbers of its strong
components.
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Fig. 5. Unidirectional union of� and � and its guessing graph. (a)� ��� ,
(b) ��� ��� � �� � ������ � � .

Corollary 2: For any digraph with strong components
for , we have and

. Therefore,
.

Proof: The proof goes by induction on the number of
strong components. The case where is straightforward.
Let us assume the result is true for all digraphs with at most

components and consider with components. It is well-
known that if each component is contracted to a single vertex,
the resulting digraph, referred to as the condensation of , is
acyclic. In this condensation, there exists a vertex with in-degree
0 (without loss, corresponding to the component ) such that

, where is the subgraph induced by
. We then have ; however,

since has components , we obtain
. The proof is similar for

the linear case. Finally, since for all , we
have .

Finally, the bidirectional union of two digraphs, denoted as
, is obtained by connecting all vertices of to those of

, and vice versa. We have
. Its adjacency

matrix is given by

Clearly, for any digraph and any two induced subgraphs
and of with disjoint vertex sets, we have ;
therefore, the guessing number of the bidirectional union is an
upper bound on the guessing number of any union of and

.

Fig. 6. Bidirectional union of � and � and its guessing graph. (a) � ��� ,
(b) ��� ��� � �� � ������ � .

Proposition 8: For any with disjoint vertex sets and
any

where denotes the cartesian product. Therefore

(7)

In the linear case, we have
.

Proof: The proof for the general case is similar
to that of Proposition 6 and hence omitted. We now
prove the linear case. Let such that

. Since

for some and , we have

.
Conversely, without loss suppose

and let and satisfy
for . We can express as

, where . Then the ma-
trix has rank .

Example 5: The guessing graph of the bidirectional union of
and is depicted in Fig. 6 below. In this case, we have

because the optimal protocols are
linear.

Example 6: Consider the following network coding instance,
where sources want to transmit a message each via a common
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Fig. 7. Bottleneck with � � �� � � �. (a) Network coding (circuit represen-
tation), (b) Guessing game.

bottleneck of nodes (depicted in Fig. 7 for
). The network coding is solvable if and only if the complete

bipartite graph has guessing number . Since this digraph
can be viewed as the bidirectional union of the empty graphs on

and vertices, its guessing number is upper bounded by by
Proposition 8. Conversely, since it contains disjoint cliques

, its guessing number is lower bounded by . Therefore,
the network coding instance in Fig. 7 is solvable if and only if

, i.e., there is no bottleneck and routing is sufficient.

D. Combining Alphabets

A network coding instance solvable over is clearly solv-
able over for any . However, it is shown in [33] that
certain network coding instances can be solvable over an al-
phabet but not over some larger alphabet. In this section, we
discover interesting properties of the guessing graphs of the
same digraph over different alphabets, which yield bounds on
and relations amongst the guessing numbers of a digraph over
different alphabets. First, a set of fixed configurations of a pro-
tocol on over can also be viewed as fixed configurations
of a protocol over the alphabet , for any which yields

(8)

We refine this bound below by showing that the guessing
graph on the cartesian product of two alphabets is closely re-
lated to the guessing graphs on the two initial alphabets.

Proposition 9: For any digraph and any we have

(9)

and hence

Proof: Since the sets and are isomorphic, we
consider two configurations .
Suppose they are adjacent in ; therefore there exists

such that and
. This is equivalent to

and and ( or ). It is easy to
check that they are adjacent in . Moreover,
we can similarly prove the other inclusion.

As a corollary, we obtain that the guessing number over any
alphabet can serve as a lower bound for the guessing numbers
over larger alphabets.

Corollary 3: For any with , we have

Proof: By applying Proposition 9 recursively, we obtain
, and the upper bound follows from

(8). Also, applying (9) recursively yields
for all , which combined with (8) yields the lower bound.

The result in (9) can be interpreted using digraph unions. For
any digraph and any , we denote the digraph ,
whose vertex set is given by

and whose edge set is
. In other words, we take copies

of and make connections between the copies corresponding
to the edges in . Therefore, the in-neighborhood of a vertex

in consists of the copies of the in-neighborhood
of . In terms of network coding, the digraph can be
viewed as expanding the instance according to the symbols in

of an element of .

Proposition 10: For any , and , we have
, and hence, .

The proof is similar to that of Proposition 6 and is hence
omitted. Note that for and , we have

; hence, (9) can be viewed as an
extension of Proposition 10 to mixed alphabets. Proposition 10
means that playing the guessing game over extension fields is
equivalent to playing the guessing game over the base field, but
on several copies of the digraph.

The result in Proposition 10 also implies that is the
union of two copies of which, like the unidirectional union of
Proposition 7, does not improve on the general guessing number
of the disjoint union. As seen before, the unidirectional union
did not add any cycles to the digraph; hence, the information
could not circulate between the two copies of the digraph. On
the other hand, the union does create new cycles, yet the
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Fig. 8. Digraph �� � with guessing number 2.

information received by any vertex is redundant as the in-neigh-
borhood of any vertex in is simply two copies of its
in-neighborhood in . For instance, the digraph illus-
trated in Fig. 8 has guessing number 2 over any alphabet.

IV. CONSTRUCTION OF DIGRAPHS BASED ON CYCLIC CODES

In this section, for the sake of simplicity we only consider the
binary guessing number (i.e., ). However, the concepts
introduced below can be easily extended to any field.

A. Digraphs Generated by Cyclic Codes

We first define a simple linear protocol which takes advantage
of all the information incoming at every node.

Definition 2: The parity-check protocol has the functions
defined for any as , or

equivalently .
By definition, the parity-check protocol is linear; hence, its

fixed configurations form a linear binary code. It is easily shown
that it has an extended parity-check matrix given by

. Clearly, the rows of may be linearly dependent, as seen
in Example 7 below. Therefore, our aim is to use extended parity
check matrices with low rank.

Example 7: Let be the directed cycle on three edges with
adjacency matrix

The resulting matrix is given by

which has rank 2. Therefore, the fixed configurations of the
parity-check protocol form a binary code (the repetition
code) whose generator matrix is given by

Any linear protocol on a digraph can be viewed as the
parity-check protocol on a subgraph of . Therefore, the linear
guessing number of is given by the logarithm of the maximum
number of fixed configurations of the parity-check protocol over
all subgraphs of . In other words, we do not lose any gener-
ality by considering the parity-check protocol only instead of
any linear protocol. The maximum linear guessing number over
all digraphs with no bidirectional edges is hence given by the
logarithm of the maximum number of fixed configurations of
the parity-check protocol of all digraphs with no bidirectional
edges.

We now reverse the problem, and construct digraphs
based on linear codes. Clearly, any collection of vectors

where the th coordinate of is
equal to 1 would produce a matrix of the type for some
digraph , and the code would simply be the dual of the span
of these vectors. Since the properties of the obtained digraph
are not easy to determine in general, we focus on the class of
cyclic codes.

Definition 3: Let be an binary cyclic code gen-
erated by the polynomial . Then the digraph generated
by has adjacency matrix , where the rows of

are the cyclic shifts of . Equivalently, denoting
, there is an edge from to if

and only if for all and .

Example 8: Three trivial polynomials generate the following
digraphs.

• The polynomial generates the empty graph;
• generates the directed cycle (in particular,

given in Example 7 is generated by the single
parity-check code);

• generates the
clique .

The generation of the clique can be generalized when
is a composite number. Then we have

; hence, the rightmost polyno-
mial generates an cyclic code, which generates the
disjoint union of cliques of size each. According to our pre-
vious results, this digraph has in-degree and out-degree equal to

, while its linear guessing number is . This digraph is
not connected; however, by adding a cycle that connects all
the vertices, we make the digraph strong, while increasing the
in-degree by 1. We thus obtain a class of strong regular digraphs
on vertices and in-degree satisfying
for all values of .

The properties of digraphs generated by cyclic codes are
listed in Theorem 2 below.

Theorem 2: The digraph on vertices generated by with
generator polynomial (hence, divides

) has the following properties.
1) is regular with in-degree and out-degree , where

is the number of nonzero coefficients of .
2) has no bidirectional edges if and only if for

all . In particular, if , then has
no bidirectional edges.
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3) is a tournament if and only if for all
.

4) If for some relatively prime,
then is strong.

5) The first vertices induce a maximum acyclic
subgraph.

6) The binary (linear) guessing number of satisfies
.

Proof: The matrix obtained by shifting times has
the following properties. First, divides ; hence,

and that matrix has ones all over the diagonal, which en-
sures that it is the adjacency matrix of some digraph . Second,
every row and every column has exactly ones, which yields
Property 1). Properties 2) and 3) are easy to prove.

Third, if for some relatively prime, then we have
for some , and hence,

for . Therefore, there is a path of length
from the node to the node for all .
By iteration, there is a path between and for all

and is strong.
Finally, we prove the last two properties simultaneously. It

is easy to check that the first induce a maximum
acyclic subgraph in reverse topological order. The dimension of
a cyclic code is equal to , and hence, the dimension
of its dual is equal to and

. On the other hand,
by Proposition 4, implying equalities everywhere.

Properties 5) and 6) naturally imply constructions of solvable
network coding instances based on cyclic codes, where the first

vertices of the digraph generated by are the in-
termediate nodes, while the remaining vertices are split
into sources and sinks. These instances are solvable over
using the parity-check protocol, and are hence solvable over any
alphabet with cardinality equal to a power of 2.

Theorem 2 indicates that a good choice for has high
degree but low weight. We give an example of such a polynomial
below.

Example 9: Let and consider the digraph generated
by and illustrated in Fig. 9. By Theorem
2, this is a strong and regular tournament, sometimes referred
to as a Paley tournament. Its binary linear guessing number is

, and the fixed configurations form the (7,4) Ham-
ming code.

This construction illustrates the elegance of the guessing
game approach to network coding. Indeed, the source-inter-
mediate node-sink hierarchy in the network coding instance
vanishes and all nodes are on the same level, hence yielding
more symmetry in the resulting digraph.

More generally, the generator polynomial of the
simplex code generates a digraph on vertices, regular
with in-degree , maximum induced subgraph of
size , and binary linear guessing number

. Although these digraphs may have bidirectional edges, the
corresponding network coding instances do not. Therefore, we
obtain solvable network coding instances where the in-degree is
around half the number of vertices, and for which the number

Fig. 9. Digraph � on 7 vertices generated by � � � � � � � with binary
linear guessing number 4.

of intermediate nodes grows as the logarithm of the number of
source-sink pairs.

B. Digraphs With No Bidirectional Edges Generated by Cyclic
Codes

So far, we allowed digraphs to have bidirectional edges,
which made the search for digraphs with high linear guessing
numbers quite easy. We are now interested in digraphs with
no bidirectional edges. Based on Theorem 2, this is equivalent
to searching for polynomials dividing such that

for all .
We first give a simple example of such a polynomial. Let

be a multiple of 3 with , then
and divide . In particular, their gcd, given

by , is a
valid polynomial with degree and weight 6. Therefore, ac-
cording to Theorem 2, the digraph generated by this polynomial
has in-degree and out-degree 5 and its linear guessing number
is . Moreover, Theorem 2 ensures that this digraph has no
bidirectional edges and is strong.

This example is interesting because it designs a class of di-
graphs with no bidirectional edges for which we know the linear
guessing number is strictly greater than . On the other hand,
the lower bound in [12, Theorem 3.3] is given by the cycle
packing index of the digraph, which can be easily shown to be
upper bounded by ; therefore, that bound is not tight for these
digraphs.

If is even, then is a valid poly-
nomial, which generates a strong unidirectional digraph with
in-degree and whose linear guessing number equal to .

Let be a factor of with

degree and weight . Then for all
has as factor. The degree of is
clearly , while the weight of is , and we have

. Therefore, this constructs an infinite class of strong
unidirectional digraphs with vertices, in-degree , and
binary guessing number .

Our approach was restricted to polynomials which gen-
erate a cyclic code, or equivalently, which divide . How-
ever, any polynomial where for
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all , and for relatively prime to generates a reg-
ular strong digraph with no bidirectional edges. The polynomial

belongs to the code generated by the greatest common di-
visor of and , therefore the guessing number of the
digraph generated by has guessing number lower bounded
by .

Example 10: Let and
, then

In this case, the polynomial has a lower weight than its gcd,
and hence, sparser digraphs can be generated by considering
all polynomials instead of the generator polynomials of cyclic
codes only. Nonetheless, considering such general digraphs is
not suitable for constructing network coding instances, as the
size of a maximum induced subgraph in the digraph generated
by is not easily computable: it is at least ;
however, it is actually equal to 3. Note that Theorem 2 does not
apply to , as it does not divide , and the guessing
number is strictly less than the degree of .

V. ON THE MAXIMUM GUESSING NUMBER OF DIGRAPHS

As seen above, constructing digraphs with high guessing
numbers is relatively easy when we allow bidirectional edges.
The main purpose of this section is to evaluate the maximum
guessing number one obtains when considering strong digraphs
with no bidirectional edges. We are particularly interested in
the binary linear guessing number of sparse digraphs, which
will surprisingly turn out to be sufficient. However, for the
sake of completeness, we shall state our results as generally as
possible, as some ideas extend to digraphs with bidirectional
edges as well.

A. Upper Bounds on the Guessing Number

We begin this section by deriving upper bounds on the (linear)
guessing number of digraphs based on their parameters, such as
the minimum or maximum in-degree. We first remark in Lemma
2 that the gap between the guessing number of digraphs and the
number of their vertices must grow arbitrarily large. This im-
plies that the probability of success in the guessing game on a di-
graph with no bidirectional edges tends to zero when the number
of players tends to infinity. This also indicates that in any family
of solvable network coding instances without any two-hop path
between a source and its according sink, the number of interme-
diate nodes must tend to infinity.

Lemma 2: For any digraph with no bidirectional edges and
any , we have .

Proof: Since has no bidirectional edges, its girth is at
least 3. By Proposition 5, we have

. Applying the sphere-packing bound
, we obtain the desired bound on .

Proposition 11 below refines this statement for the linear
guessing number of sparse digraphs without bidirectional
edges.

Proposition 11: For any digraph on vertices with no
bidirectional edges and with minimum and maximum in-degree

and , we have and
, where

Proof: We first prove the bound based on the minimum
in-degree. Let such that

, and denote . Since has no bidi-
rectional edges, all the rows of are distinct. We consider the

vectors in the row space of . Since the fixed configurations
of the protocol corresponding to form a code with minimum
distance at least 2 by the proof of Proposition 5, vectors
have a zero in coordinate for any . However, let be a column
of with at most of ones, i.e., there are at least
distinct rows of with a zero in coordinate , and accounting
for the all-zero vector, we obtain .

We now prove the bound based on the maximum in-degree.
The code with extended parity-check matrix has minimum
distance at least 3, therefore its dual code (with dimension

) has the following property: for any pair of coordinates
vectors have in these coordi-

nates. Let us give a lower bound on the maximum number, taken
over all pairs of columns, of rows of which have
in columns and . First, note that if , then the rows with

in also have in . Therefore, without loss, we can
assume all the columns of have weight . The supports
of these columns then form a constant-weight code of length ,
weight , and cardinality . As seen in Section II-D, its min-

imum distance satisfies

and therefore . Let and be two columns of at distance
, then the union of their support has cardinality and

there are rows of with in coordinates and
. Accounting for the all-zero vector, there are at least

such vectors, and hence, .

B. Combining Digraphs to Increase the Guessing Number

In Section IV, we showed how to construct digraphs with
high guessing numbers for finite parameters. In this section, we
investigate how to combine digraphs in order to generate infinite
families of digraphs with high guessing numbers.

Definition 4: The strong product of two digraphs and
, denoted as is defined similarly to its counter-

part for undirected graphs. Its vertex set is the cartesian product
, and there is an edge from to

if and only if either and , or
and , or and

. Equivalently, the adjacency matrix of the strong product
is given by

where denotes the Kronecker product of matrices.
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Fig. 10. Digraph � , with linear guessing number 5.

The properties of the strong product are listed in Proposition
12 below.

Proposition 12: Let and be two digraphs on and
vertices, respectively. Then their strong product

has the following properties:
• It has vertices.
• If and are both strong and without any bidirectional

edges, then so is .
• If and have regular in-degrees and out-degrees, it

is regular with in-degree and out-degree
.

• Its linear guessing number satisfies
for all .

Proof: The first three properties are easy to verify. We
hence prove the lower bound on the linear guessing number. Let

such that for
. Then

, which yields

.

Example 11: For any and , denote the uni-
directional cycle raised to the power of according to
the strong product as (for instance, is illustrated in
Fig. 10). Then is a strongly regular digraph on
vertices with in-degree and out-degree and linear
guessing number . The lower bound on
the guessing number follows Proposition 12. The upper bound
follows in Proposition 4, where

since the vertices in
induce an acyclic subgraph.

This yields the following construction of network coding in-
stance. The vertices in induce an acyclic sub-
graph, therefore we use them as intermediate nodes. The source
and sink nodes come from the split of the other
vertices of . Since the linear guessing number is equal to the
number of sources, this network coding instance is solvable over
any alphabet by linear operations.

The sequences for a fixed have the following property:
the ratio between the guessing number over the number of ver-

tices, given by tends to 1 as tends
to infinity. We remark that the convergence could be sped up by
considering powers of the digraph depicted in Fig. 9, thus
obtaining a ratio of for alphabets of cardinality equal
to a power of 2, but not necessarily for other alphabets.

A consequence of Proposition 4 is that for any family of di-
graphs with ratio between the guessing number and the number
of vertices tending to 1, the maximum in-degree must tend to
infinity. On the other hand, the digraphs become more and
more sparse as and increase, as , and hence,
we can easily construct sequences of strong digraphs with reg-
ular in-degree on the order of for any . In Theorem 3
below, we strengthen this result by constructing strong digraphs
with the ratio of the guessing number over the number of ver-
tices tending to 1 and in-degree tending to infinity as slow as
possible.

Theorem 3: For any and any function of
tending to infinity, there exists an infinite family of strong

digraphs on vertices (nondecreasing sequence) with
girth and regular in-degree and out-degree such that

for all and for any .
Proof: For all , let be the smallest multiple of such

that for all . Then select copies
of and join them by tying a directed cycle around all the
vertices. The cycle goes across the different copies as follows.
Sort the vertices of in lexicographic order, so that
is an edge for all and denote the vertices of the
obtained digraph as , where . The cycle is
then formed by edges and an edge

, and so on.
The obtained digraph has vertices and in-degree

, and hence, . Furthermore, it can
be easily shown that this digraph has girth and satisfies

by Example 11,
which tends to 1.

Theorem 3 implies that there exist network coding instances
with a relatively small number of intermediate nodes, a rela-
tively small number of edges coming in or out each node, and an
arbitrarily long path between each source and its corresponding
sink. These instances are linearly solvable over any alphabet,
and the operation at each node is known.

VI. CONCLUSION AND OPEN PROBLEMS

In this paper, we proved that the problem of deciding whether
a network coding instance was solvable reduced to a problem
on the independence number of a related undirected graph,
referred to as the guessing graph. Although we have derived
bounds on this independence number, how to efficiently com-
pute it remains an open problem. A brute force approach would
be computationally infeasible, as the maximum independent
set problem is NP-hard. Also, algorithms for the maximum
independent set problem on general graphs are inappropriate,
for the size of the guessing graph grows exponentially with the
number of nodes in the original network coding instance. How-
ever, the guessing graph has many symmetries (its structure is
fixed by the original instance); hence, specific algorithms could
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be devised to bound or compute its independence number. The
relationships between this problem and coding theory is of
peculiar interest. In particular, we exhibited classes of network
coding instances for which the maximum independent set of
the guessing graph is given by cyclic codes.

The second contribution of our paper is the design of a family
of digraphs for which the ratio between the guessing number
and the number of vertices tends to one, although they have
a large girth and are sparse. This family of digraphs yields a
family of solvable network coding instances, for which binary
linear operations are sufficient. Although we gave necessary and
sufficient conditions on the sparsity of the graph in terms of
edges, the maximum speed of convergence to one of the ratio
remains unknown. Similarly, the relation between the guessing
number and the girth seems an interesting problem for network
design.
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