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Abstract— An analogue of McEliece’s cryptosystem, the keys remain the same while the encryption key is also
Gabidulin-Paramonov-Trejtakov (GPT) public-key cryp-  kept secret. Unfortunately, this system is vulnerable to
tosystem is based on rank-metric-based Gabidulin codes in- chosen-plaintext attacks. Struik and van Tilburg [14]

stead of Goppa codes. The GPT cryptosystem has attracted . -
steady attention since it is much more robust against the have discovered an efficient attack (referred to as the

decoding attacks and can therefore achieve the same level of ST Attack) against the latter adaptation. However, Rao
security with much smaller keys. The key sizes, nonetheless,argued that, while efficient in theory, the ST attack may

may still be too large for some applications. To reduce the not be applicable in practice [12]. Denny [2] proposed to
key sizes even further, we propose private-key adaptations use Reed-Solomon or Preparata codes in the Rao-Nam
of the GPT cryptosystem, and evaluate their robustness . )
against several attacks. schemg to further (_anhance its secgnty. '
In this paper, we introduce two private-key adaptations
|. INTRODUCTION — one direct and the other with an extra permutation
McEliece’s cryptosystem [8] based on error-correctingatrix — of the GPT cryptosystem, and investigate
codes is an important alternative to the number-theortheir robustness against several attacks. We first consider
based cryptosystems such as RSA. Following the satte chosen-plaintext attacks and show that the chosen-
principle used in McEliece's cryptosystem, Gabidulinplaintext attacks are futile against our new cryptosys-
Paramonov, and Tretjakov [4] proposed a public-kefgms. We also propose a new chosen-plaintext attack,
cryptosystem which uses Gabidulin codes [3] based avhich is effective only for some special cases. Nonethe-
the rank metric, referred to as the GPT cryptosystehass, to defeat this new attack, the parameters for the
henceforth. The two groups of attacks against McEliece'®w private-key cryptosystems have to be chosen so as
cryptosystem and the GPT cryptosystem respectively camavoid these special cases. The Struik and van Tilburg
both be divided into two categories: structural and deco@ST) attack is applicable to our new cryptosystems,
ing attacks. In comparison to McEliece’s cryptosystenand the work factors of the ST attack against our new
the GPT cryptosystem seems to have two advantagesyptosystem are evaluated. In comparison to the private-
so far it has been shown to be more robust againgty adaptations of McEliece’s cryptosystem, our private-
the decoding attacks than McEliece’s cryptosystem akey cryptosystems can achieve the same level of security
therefore requires much smaller keys than McEliecelsith smaller key sizes. With respect to the three attacks
cryptosystem. we consider, the use of permutation matrix in the private-
Nonetheless, the knowledge of the public key in botkey adaptation of the GPT system does not improve the
systems in a sense helps the attacker. If the pubBgstem’s robustness.
key is also kept private in both systems, smaller key The rest of the paper is organized as follows. To
sizes are needed to achieve desirable security levettake this paper self-contained, in Section Il we give a
Of course, the potential applications for the McEliece’srief review of McEliece’s cryptosystem, its private-key
cryptosystem or the GPT cryptosystem are differeadaptations, and the ST attack, and also summarize the
from the appropriate applications for their private-kekey components of the GPT cryptosystem. In Section llI,
adaptations. Two private-key adaptations of McElieceise introduce our private-key cryptosystems based on
cryptosystem were proposed by Rao [11] and Rao a@hbidulin codes, and analyze the attacks against our
Nam [13], respectively. The former adaptation, calledryptosystems. Section IV remarks on the feasibility of
PRAC, is a direct adaptation of McEliece’s system: ththe chosen-plaintext attacks, and Section V gives some



C. ST attack

The basic idea of any chosen-plaintext attack is to find
all the possible encryptions of some well-chosen plain-
texts to recover the encryption matrix. More specifically,
we first obtain the entire sét of encryptions using all

McEliece’s cryptosystem comprise the following comPOSSible error vectors of a chosen plaintext
ponents [8]: y & {y : y = Encryption,(c),z € Z},

1) Private key:The triple (G,S,P) whereG is a

k x n generator matrix of a Goppa codg,is an
invertible & x k random matrix over G2) andP
ann x n permutation matrix.

2) Public key:The encryption matrit = SGP and

concluding remarks.

II. PRELIMINARIES

A. McEliece’s cryptosystem

whereZ denotes the set of all possible error vectors. In
their attack, Struik and van Tilburg [14] first construct
the grapi” = (Y, D) based on the encryptions forThe
set of vertices il is Y, the set of different encryptions
the error-correction capabilityof the Goppa code. ©f . and the set of edged consists of the differences
3) Encryption schemetet the plaintexic be a word Petween two encryptions, i.ed,(y1,y2) = {y1 —y2 :
of length over GR2). The corresponding cipher-¥1,¥2 € Y}. For each of the plaintexts; = ¢ + u;,
texty is given byy = cE+z, wherez is a random Whereu; is the vector with a 1 in position and zeros
error vector with lengtm and Hamming weight.  €verywhere else, a similar grafih can be constructed

4) Decryption schemeThe bounded-distance decodPased all possible encryptions. If we can identify two

ing for the Goppa code can be used to finilom Verticesy; andy in I'; and I respectively that were
y. obtained using the same error vector, we would have

e; = y; — y wheree; is the i-th row of the encryp-

. : . tion matrix. The main problem is how to determine if
B. Private-key adaptations of McEliece's CryptOSySterTt]he error vectors are the same. That is, how to find
Rao [11] first introduced a private-key cryptosysterthe correspondence betweg&nandI’;. The number of
using error-correcting codes called private-key algebraigttempts needed apparently depends on the cardinality

coded cryptosystem (PRAC). PRAC is a direct adaptaf the automorphism group df. The work factor of the

tion of McEliece’s system, the only difference betweeST attack is shown to b®(knN?log N +kn|Aut(T)|*)

the two is that the encryption matri is also kept [14] whereN is the size ofZ.

secret in PRAC. Unfortunately, this system is vulnerable

to chosen-plaintext attacks that are based on majorPy The GPT cryptosystem

voting [13]. The GPT system is analogous to McEliece’s cryp-
To remedy this vulnerability, Rao and Nam theiosystem. Instead of using codes which have a decoding

proposed an improved adaptation of McEliece’s cryplgorithm in the Hamming metric, the GPT cryptosystem

tosystem (called the Rao-Nam scheme below) [13]. THSes Gabidulin codes which have an efficient decoding

improvements are based on two modifications aimed &gorithm in the rank metric. Unfortunately, these codes

thwart the chosen-plaintext attacks. One modificatioif€ Very structured, so it is necessary to break their

is to permute only after the error vector is added tdtructure by using a distortion matrix, which is described

the codeword. That isy = (cSG + z)P. The other below. The following are the main components of the

modification is that the error vectors are no longefyStem:

the coset leaders in the standard array of the codel) Private key The triple (G, S, X), where G is

Instead, one error vector is chosen at random from a k x n generator matrix of a Gabidulin code

each coset. Since the error vectors have a one-to-one over GH¢™), S is an invertiblek x k& random

correspondence with the syndromes, syndrome decoding
based on standard array must be used in decryption
instead of the bounded-distance decoding, which is used
in McEliece's cryptosystem and the PRAC. This set
of error vectors is also part of the secret key for the

Rao-Nam scheme. Since the weight of the errors are2)

no longer bounded, we can choose error vectors with

an average Hamming weighjt Hence, chosen-plaintext 3)

attacks based on majority voting are no longer effective.

matrix over GKg¢™) and X is a k x n matrix
over GK¢™) such that ranfcX) < #,Vc =
(c1,¢o,...,c) € GF(¢™)k, wheret; < t is
called thedistortion parameter X is called the
distortion matrixwith distortion parametet;
Public key E = SG + X and the distortion
parametet; .

Encryption schemelet the plaintextc be a word
of length & over GH¢™). The corresponding ci-



phertexty is given byy = cE + z, wherez is a B. Chosen-plaintext attack
random error vector with lengthand rank(t—t;).

4) Decryption schemeWe havey = cSG+ (cX +
z), where(cX + z) has a rank less than or equa
to ¢. Using the decoding algorithm of Gabidulin
codes, the receiver retrieves the wafd= ¢S and
computesc = ¢/S™".

The first chosen-plaintext attack was introduced
gainst PRAC. It was based on majority voting, taking
dvantage of the low weight of the error patterns to find

good estimates of the rows of the encryption matrix.
Here we show that this attack does not work against our
new cryptosystems.

Let ¢, andc, be two plaintexts differing in only one

[1l. NEW PRIVATE-KEY CRYPTOSYSTEMS BASED ON  Position, i.e.,
RANK METRIC AND POSSIBLE ATTACKS .
Ci—C=u; forl1<i<k

A. Private-key adaptations then the difference between their ciphertexts is given by

We now propose two private-key adaptations of the
GPT cryptosystem. We first consider a direct adaptation
of the GPT system. That is, we keep the same encryptiameree; is thei-th row of the encryption matrig. The
and decryption matrices, the same way of selecting thiéfference(z; —z, )P has a rank inferior or equal &{t—
error patterns (all error vectors have a ranktof ¢;), ¢;) but there is no bound for its Hamming weight. Hence,
but we do not publish the encryption matiix one cannot estimate; by using majority voting. Note

An alternative is to use a permutation matrix in théhat the permutation matri® does not make a difference
encryption as in the Rao-Nam scheme. The encryptidm the discussion above. Thus, the permutation does not
matrix then become®& = SGP + XP, whereP is enhance the security against the chosen-plaintext attack
an (n x n) permutation matrix. Note that cryptosystenbased on majority voting.
with the permutation is equivalent to the one without:
the productGP is now a generator matrix of a differentC. New chosen-plaintext attack against the system

Gabidulin code with the same minimum rank distarce Let us denote the set of error vectors of rank Weight

[7], and theXP matrix is still a valid distortion matrix t—t as Z and the set of encryptions of one message
with parametet;. We will see below that indeed using ac as Y. That is, Z = {z : rank(z) = t — t;}. We note

permutation matrix does not increase the level of securifijose ciphertexts ag’ = cE + z/P = y + z/P. The
of our scheme against the attacks considered herein. condition for our new attack to work is thaf = |Z| is

An attack against a private-key cryptosystem oftenot a multiple of the characteristic of the field. Let us
consists of two steps. The goal of the first step is teote the remainder of the division of by p asv. That
discover the encryption matrix, and the second stepii§ v = N (mod p).
used to recover the key or the plaintext. Note that with The idea behind this attack is that once we recover all
the knowledge of the encryption matrix, the second stehe elements i, the sum of all the ciphertexts il
is same as an attack against the corresponding pubken be used to determire
key cryptosystem, which is the GPT cryptosystem in our

case. Yoy = Y (y+7'P)

Y1 — Yo =€+ (21 —22)P

There are two types of attacks against the GPT system: yley z€Z
structural attacks and decoding attacks. Gibson [6] and = vy+ Z Z/P Q)
Overbeck [10] proposed structural attacks against the s
GPT scheme, and Chabaud and Stern [1] and Ourivski = uy+ z 7 @)
and Johansson [9] proposed efficient decoding attacks oy
against the GPT cryptosystem. So far, both types of = uy. 3)

attacks against the GPT system have exponential com-
plexities. In our paper [5], we already gave a way t@he equality in (2) is due to the fact that a permutation
choose the optimal distortion parameter against bogves not change the rank of a vector. The equality in
decoding and structural attacks. (3) holds because, for arty—t;, the sum of all vectors

In the following, we focus on the security against thbaving a given rank — ¢, is equal to0. If the condition
first step of the attack. We discuss the effectiveness isfnot satisfied, i.e., it = 0, they term would disappear
two previously proposed attacks, and propose a new oa@d the attack would not be applicable.



Since the setZ is known, v is also known. We can In the discussion above] is restricted to be the set

recovery using the relation of error vectors with rank weight — ¢;. However, Z
4 p can be generalized to be a set of error vectors chosen in
y=v Z y other ways. Our new attack is still effective for a new
yIey set of error vectors if some conditions are satisfied. Let

We then repeat the process for any = ¢ + u;. Z’ be a subset of andY’ as the set of encryptions of
We define asY; the set of ciphertexts obtained fromusing an error pattern fror&’. Suppose thaf’ verifies
c;. Thatis,Y; = {yz .yl =c¢;E+2/P =y, +2/P}, the following conditions:
wherey; = y + e;. Summing up all the ciphertexts in « N’ =|Z’| is not a multiple ofp,

Y;, we have « Knowing Z’, there is an easy way to identify the
ciphertexts ofY” from those ofY".

J ) J
JZ ‘ i = zjzezz(yl +2'P) Then attack detailed above is applicable again. However,
yi€Ys 4 the two conditions above can be quite stringent. In
= vy;+ Z z'P (4) particular, permutation in the encryption process will
zicZ make the second condition almost impossible to satisfy.
= ve;t+vy. (5) Thus, in this more general case, permutation improves

Thus, e; can be obtained by the security.

D. ST attack
ei= (v Z yi|-y=v" Z yi - Z ¥'| - The last attack we consider is the ST attack, which
y]evi yl€eYi yiey works for any parameter value, and we evaluate the
We recover the encryption matri by repeating this work fa_ctors of the ST attack against our private-key
for1<i< k. adaptations below. The work factor of the ST attack
Hence, our new attack has the following steps: ~ depends on the automorphism group defined in [14],

and here we assume that the automorphism group is
simply the identity. We are therefore considering the

worst-case situation: the work factors obtained under
this assumption gives lower bounds for the actual work

factors. The authors conjecture that the automorphism
group is indeed the identity whefi = {z : rank(z) =

1) Encipher a plaintexc until all the N different
ciphertextsy!, y2, ...,y are obtained.

2) Forl < <k, for the plaintextc; = c+u;, obtain
all the ciphertexty!,y2,...,yN.

3) For 1 < i < k, recover thei-th row of the
encryption matrix by computing

t—1t1}.
_ ‘ It can be shown that the work factoil of
e =v" Z yi— Z Y- the ST attack against our scheme is of the order
yiev: yiey O(m2knN?log N). If we choosen = m, this becomes

37 A2 . X :
For our private-key cryptosystem based on Gabidulllg(m kN*log N). First, suppose we fix: andt. This

codes, the attack is effective only when we useé; = 1. caves us with two choices fok: ko = m — 2t or

k1 = m — 2t — 1. Obviously, kq is greater thark,, and
Indeed, tr:f r_wum.ber of vectors of lengthand rankr hence withk, the work factor is slightly greater and the
over GH¢™) is given by [7]

data rate is slightly higher. Therefore, we should always
=l om _ i 1 ) usek such thatm — k is even. SecondlyN depending

R(r) = <H W) : (H(Q" - ql)> - (6) ont—t;, we can optimizéV by choosingt; = 1. Note

=0 =0 that this does not contradict our results from [5] because

If ¢t —t = 1, we see that there arB(1) = (¢" — in this paper we are interested in the security against

1)(¢™—1) vectors with rank 1. This number is obviouslychosen-plaintext attacks. When ranges fromb to 15,

not a multiple ofg, so in this casey # 0, and hence the exponents ofV are given in Table I.

the condition for our attack is met. On the other hand, Assume that an attack is considered impossible if its

whent —t; > 1, R(t — t;) becomes a multiple of, work factor is greater tha2’® and hence the cryptosys-

and this new attack can not be performed. From abotem is secure against this attack, then we see that even

discussion, we see that when ¢, = 1, the permutation small parameters can achieve this secunity= 8 and

matrix does not help. Hence, the permutation matrix is= 2 gives a work factor o273-¢. Of course, the data

inconsequential with respect to our new attack. rate in this case is quite low. We can then choese: 12



m\”;*k 304091 8 g of the GPT cryptosystem and the other with an extra
6 36.243 0 0 permutation matrix, and evaluated their security against
7 41.767 | 63.78 0 several attacks. These private-key cryptosystems achieve
g ‘;61'%26 ;gggg 102 - a sufficient level of security against these attacks with
10 E6.867 | 92.004 | 121.86 much smaller key sizes. They also have very large
11 61.642 | 100.89 | 135.03 numbers of error vectors, which helps to thwart the ST
ig gg-g?? i‘ig-gg 12(7)-% attack in practice. The two cryptosystems are virtually
12 —EEE1 126 991 17348 the same with respect to the attacks considered herein.
15 80.087 | 135.56 | 186.11 REFERENCES
TABLE | [1] F. Chabaud and J. Stern, “The cryptographic security of the syn-

THE EXPONENT OF THE WORK FACTORS OF THST ATTACK

(2]

and k£ = 8 for a much higher rate. This shows that we
can overcome the ST attack by using small parametergg

IV. NUMBER OF ERROR PATTERNS

Rao [12] argued that if the set of error patterns is Iargé‘”
enough, the ST chosen-plaintext attack is infeasible since
it does not have access to all ciphertexts correspondirlgl
to the chose plaintext. Thus, the number of error patterns
gives a rough indication of the robustness against chose[s
plaintext attack. In the following, we investigate the
numbers of error patterns for our new system. 7]

The number of vectors of length over GR¢™) with
rank r is given by Equation (6). If we choose = m,

the number of vectors with rank becomes [8]

R(r) = l:[1 il Vi ’
U=y

Let us denote the number of vectors with Hamming%
weightr asH (r). For anyr < n, we haveR(r) > H(r).
This means that using the cryptosystems based on rdhi
metric can have a much larger number of error patterns
than the cryptosystem based on Hamming metric. Hengg
our private-key cryptosystem based on rank metric can
achieve the same level of security as those based %55
Hamming metric such as the Rao-Nam scheme Wi{
smaller key sizes. If, for example, we choase 2,n =
m = 20,k = 14,t = 3,¢; = 1, the number of error (14
patterns available is approximately = 2774, Denny
[2] finds N = 2 for a (25,20) Reed-Solomon code
over GR2!%), which is much smaller. Indeed, using
smaller key sizes than the ones used in Denny’s system,
our cryptosystem has more error patterns and are more
secure against chosen-plaintext attacks.

V. CONCLUSION

We have proposed two private-key cryptosystems
based on Gabidulin codes, one being direct adaptation
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