
Complexity of Decoding Gabidulin Codes
Maximilien Gadouleau and Zhiyuan Yan

Department of Electrical and Computer Engineering
Lehigh University, PA 18015, USA
E-mails: {magc, yan}@lehigh.edu

Abstract— In this paper, we analyze the complexity of decoding
Gabidulin codes using the analogs in rank metric codes of
the extended Euclidean algorithm or the Berlekamp-Massey
algorithm. We show that a subclass of Gabidulin codes reduces
the complexity and the memory requirements of the decoding
algorithm. We also simplify an existing algorithm for finding
roots of linearized polynomials for decoding Gabidulin codes.
Finally we analyze and compare the asymptotic complexities of
different decoding algorithms for Gabidulin codes.

I. INTRODUCTION

Error correction codes with the rank metric [1]–[5] have
been receiving steady attention in the literature due to their
applications in storage systems [3], public-key cryptosystems
[4], space-time coding [5], and network coding [6], [7].

The pioneering works in [1]–[3] have established many
important properties of rank metric codes. Independently in
[1]–[3], a Singleton bound (up to some variations) on the
minimum rank distance of codes was established, and a class
of codes that achieve the bound with equality was constructed.
We refer to codes that attain the Singleton bound as maximum
rank distance (MRD) codes, and the class of MRD codes
proposed in [2] as Gabidulin codes henceforth. In [1], [2],
analytical expressions to compute the weight distribution of
linear MRD codes were also derived. In [3], [8], it was
shown that Gabidulin codes are also optimal in the sense of
a Singleton bound in crisscross weight, a metric considered
in [3], [9] for crisscross errors, which occur in storage de-
vices. In [6], [7], a class of asymptotically optimal codes for
error and erasure correction in random network coding was
designed based on Gabidulin codes. Following the works in
[1]–[3], the construction in [2] was extended in [10] and the
properties of subspace subcodes and subfield subcodes were
considered in [11]; the error performance of Gabidulin codes
was investigated in [9], [12].

Gabidulin codes can be viewed as evaluations of linearized
polynomials, a special class of polynomials over finite fields
[13], [14]. These polynomials form an algebra under addition
and symbolic product, and hence have an extended Euclidean
algorithm (EEA). In [2], a bounded rank distance decoder for
Gabidulin codes was designed based on the EEA for linearized
polynomials. Berlekamp [15] designed a decoding algorithm
for Reed-Solomon codes, which can be interpreted as the
design of a minimum length linear feedback shift register
[16]. This algorithm was adapted to the decoding of Gabidulin
codes in [17], [18], where it was extended to correct both
errors and erasures. A decoding algorithm that parallels the

Peterson-Gornstein-Zierler (PGZ) algorithm was introduced
for Gabidulin codes in [3]. Finally, the counterpart of the
Welch-Berlekamp (WB) algorithm was considered in [19].
Henceforth, we omit “the counterpart” in our references for
simplicity.

The complexity of decoding Gabidulin codes using the PGZ
algorithm or the WB algorithm was analyzed in [3] and [19],
respectively. In this paper, we analyze the complexity of the
decoding algorithms for Gabidulin codes using the EEA or
the Berlekamp-Massey algorithm (BMA). We first investigate
the complexity of operations for linearized polynomials. We
also consider the subclass of Gabidulin codes for which the
parity check matrix is generated by elements of a normal basis.
We show that this subclass of Gabidulin codes reduces the
complexity and the memory requirements of the algorithm.
The most efficient algorithm so far for finding roots of a
linearized polynomial, essential to the decoding of Gabidulin
codes, was given in [20]. We simplify this algorithm for de-
coding Gabidulin codes. We finally compare the complexities
of these decoding algorithms with other existing algorithms.

The rest of the paper is organized as follows. Section II
gives a brief review of the rank metric, linearized polyno-
mials, and Gabidulin codes in order to keep this paper self-
contained. In Section III, we investigate the complexity of
linearized polynomial operations. In Section IV, we determine
the complexity of the EEA and the BMA for linearized
polynomials. Section V investigates the complexity of the rest
of the decoding algorithm. Finally, Section VI compares the
asymptotic complexities of different decoding algorithms for
Gabidulin codes.

II. PRELIMINARIES

A. Rank metric

Consider an n-dimensional vector x =
(x0, x1, . . . , xn−1) ∈ GF(qm)n. The field GF(qm) may
be viewed as an m-dimensional vector space over GF(q).
The rank weight of x, denoted as rk(x), is defined to be
the maximum number of coordinates in x that are linearly
independent over GF(q) [2]. The coordinates of x thus span
a linear subspace of GF(qm) with dimension equal to rk(x).

For all x,y ∈ GF(qm)n, it is easily verified that dR(x,y) def=
rk(x − y) is a metric over GF(qm)n, referred to as the rank
metric henceforth [2]. The minimum rank distance of a code
C, denoted as dR, is simply the minimum rank distance over
all possible pairs of distinct codewords. The minimum rank

1081978-1-4244-2247-0/08/$25.00 ©2008 IEEE.



distance dR of a code of length n over GF(qm) satisfies
dR ≤ dH [2], where dH is the minimum Hamming distance of
the same code. Due to the Singleton bound on the minimum
Hamming distance of block codes [21], the minimum rank
distance of a block code of length n and cardinality M over
GF(qm) thus satisfies

dR ≤ n− logqm M + 1. (1)

In this paper, we refer to the bound in (1) as the Singleton
bound for rank metric codes and codes that attain the equality
as MRD codes. The rank distribution of linear MRD codes
was determined in [1], [2].

B. Linearized polynomials

Linearized polynomials (LP’s) were first introduced in [13],
and have since been widely studied (see [21]–[23]). In order
to simplify notations, we denote [i] def= qi henceforth.

Definition 1 (Linearized polynomial): A linearized polyno-
mial F (z) over GF(qm) is a polynomial of the form F (z) =∑u

i=0 fiz
[i], where fi ∈ GF(qm) for 0 ≤ i ≤ u.

We refer to u as the degree of F (z). Note that for any α ∈
GF(qm), α[m] = α[0], and hence we can always assume that
the degree of F (z) satisfies u < m. Linearized polynomials
can be viewed as linear operators over GF(qm), thus their
roots form a linear subspace of GF(qm) with dimension at
most equal to the degree of the LP. Linearized polynomials
form an algebra under the addition and the symbolic product,
defined as L(z) ∗ M(z) def= L(M(z)). Note that the symbolic
product is not commutative. There thus exist both the left-
and right-long divisions for LP’s. There exists an extended
Euclidean algorithm (EEA) in this algebra, which is similar to
the EEA for polynomials, for either left- or right-division.

C. Gabidulin codes and their decoding

A class of linear MRD codes, referred to as Gabidulin codes
henceforth, were defined independently in [1]–[3]. Let n ≤
m and h0, h1, . . . , hn−1 ∈ GF(qm) be linearly independent.
A Gabidulin code is a linear code of length n, dimension
n − d + 1, and minimum rank distance d with the following
parity-check matrix

H =


h0 h1 . . . hn−1

h
[1]
0 h

[1]
1 . . . h

[1]
n−1

...
...

. . .
...

h
[d−2]
0 h

[d−2]
1 . . . h

[d−2]
n−1

 . (2)

We now review the problem of decoding Gabidulin codes.
Let C be an (n, k, d = n − k + 1) Gabidulin code over
GF(qm) with parity-check matrix H = (h[i]

j )d−2,n−1
i,j=0 . Sup-

pose we receive y = c + e ∈ GF(qm)n, where c ∈ C
and rk(e) = r ≤ bd−1

2 c. The objective is to determine
e = (e0, e1, . . . , en−1). We denote e = (E0, E1, . . . , Er−1)Y,
where E0, E1, . . . , Er−1 ∈ GF(qm) are linearly independent
and Y ∈ GF(q)r×n has full rank. We also define X def=
YHT = (x[j]

i )r−1,d−2
i,j=0 .

The decoding algorithm of Gabidulin codes based on the
EEA or the BMA can be split into six steps [2].

• Step 1 Calculate the syndrome s def= yHT =
(s0, s1, . . . , sd−2) ∈ GF(qm)d−1 and the associated
linearized polynomial S(z) =

∑d−2
i=0 siz

[i].
• Step 2 Determine Λ(z) and F (z) such that deg F (z) < r

and F (z) = Λ(z) ∗ S(z) mod z[d−1] using either the
EEA or the BMA.

• Step 3 Determine r linearly independent roots
E0, E1, . . . , Er−1 of Λ(z).

• Step 4 Determine x = (x0, x1, . . . , xr−1) using∑r−1
j=0 Ejx

[p]
j = sp for 0 ≤ p ≤ r − 1.

• Step 5 Determine Y using xp =
∑n−1

j=0 Yp,jhj for 0 ≤
p ≤ r − 1.

• Step 6 Calculate e = (E0, E1, . . . , Er−1)Y.

III. COMPLEXITY OF LINEARIZED POLYNOMIAL

OPERATIONS

All finite field operations are over GF(qm) unless spec-
ified otherwise. An operation over GF(qm) can be easily
be implemented in O(m2) operations over GF(q). However,
using more sophisticated techniques, these operations can be
implemented in fewer operations over GF(q).

We first discuss the representation of the finite field ele-
ments. The elements of GF(qm) are usually stored as m-
dimensional vectors over GF(q) with regard to some basis.
A normal basis is most suitable, since all the power elevations
of the type α[i] are performed using cyclic shifts, which we
will ignore in our complexity analysis. We thus assume that
a normal basis B = {β, β[1], . . . , β[m−1]} is used to represent
the elements of GF(qm) henceforth.

We consider two LP’s F (z) =
∑u

i=0 fiz
[i] of degree u and

G(z) =
∑v

j=0 gjz
[j] of degree v, where 0 ≤ v ≤ u < m.

Clearly, the sum F (z)+G(z) requires at least min{u+1, v+
1} additions. Also, if the values of u and v are unknown, the
sum can be done with m additions.

The symbolic product H(z) = F (z) ∗ G(z) is defined
as H(z) =

∑u+v
i=0 hiz

[i], where hi
def=

∑i
j=0 fjg

[j]
i−j for

0 ≤ i ≤ u + v. Therefore, H(z) can be computed with uv
multiplications and uv−(u+v+1) additions. In the case where
u + v ≥ m, we may want to compute H ′(z) =

∑m−1
i=0 h′iz

[i]

such that h′i = hi + hi+m for 0 ≤ i ≤ u + v − m. We hence
have H ′(α) = H(α) for all α ∈ GF(qm) and deg H ′(z) < m.
Note that this reduction costs u+v−m+1 additions. However,
the decoding of Gabidulin codes only considers the case where
u + v < m, and hence this reduction is unnecessary.

The left-long division of F (z) by G(z) is defined as F (z) =
Q(z) ∗ G(z) + R(z), where deg R(z) < deg G(z). It can be
computed as follows. Set i = 0 and F (0)(z) = F (z). While
di

def= deg F (i)(z) ≥ deg G(z), calculate

Q(i)(z) =
f

(i)
di

g
[di−v]
v

z[di−v], (3)

F (i+1)(z) = F (i)(z)−Q(i)(z) ∗G(z), (4)

1082



and increment i by 1. Return R(z) = F (i)(z) and Q(z) =∑i−1
j=0 Q(j)(z).
By (3), determining Q(i)(z) requires 1 inversion and 1

multiplication. However, the inversion of gv can be computed
once at iteration i = 0 and stored for the following itera-
tions. By (4), calculating F (i+1)(z) can be done using the
multiplication of two LP’s, and the addition of two LP’s.
However, the product Q(i) ∗ G(z) can be implemented with
only v + 1 multiplications, and we have f

(i+1)
j = f

(i)
j for

0 ≤ j ≤ di − v − 1. Also, we know that deg F (i+1)(z) < di,
hence the calculation of f

(i+1)
di

can be omitted, which further
saves 1 multiplication and 1 addition. Therefore, F (i+1)(z)
can be computed using v multiplications and v additions. Note
that deg F (i+1)(z) < deg F (i)(z), and hence the loop will
terminate after at most u − v + 1 iterations. The worst-case
scenario happens when u − v + 1 iterations are needed, and
hence di = u − i. We obtain that the complexity of the long
division is upper bounded by 1 inversion, (v + 1)(u− v + 1)
multiplications, and v(u− v + 1) additions.

IV. COMPLEXITIES OF THE EXTENDED EUCLIDEAN

ALGORITHM AND THE BERLEKAMP-MASSEY ALGORITHM

In this section, we determine the complexity of Step 2 of
the decoding algorithm using either the EEA or the BMA. We
decide to present the number of operations in terms of m, n, d,
and r. We will denote the complexity of a step or LP operation
as [i,m, a] henceforth, where i, m, and a denote the numbers
of inversions, multiplications, and additions, respectively.

A. Complexity of the extended Euclidean algorithm

The EEA for linearized polynomials proceeds as follows.
Let F0(z) and F1(z) be two LP’s, where deg F1(z) ≤
deg F0(z). Then there exists a chain of left-divisions

Fi(z) = Gi+1(z) ∗ Fi+1(z) + Fi+2(z), (5)

such that Fi+2(z) < deg Fi+1(z). These equalities stand for
0 ≤ i ≤ s, where Fs+2(z) = 0, and the last nonzero remainder
Fs+1(z) is the right symbolic greatest common divisor of
F0(z) and F1(z). We introduce the LP’s Ai(z) defined as
A−1(z) def= 0, A0(z) def= z and for i ≥ 1 by

Ai(z) = Gi(z) ∗Ai−1(z) + Ai−2(z). (6)

The LP’s Ai(z) are important in the decoding of Gabidulin
codes using the EEA.

The decoding algorithm uses the EEA for F0(z) = z[d−1]

and F1(z) = S(z). Denoting di
def= deg Fi(z), it can be shown

that di+1 < di, di ≤ d−1−i, and dr = r. The EEA may stop
after obtaining Ar(z). Note that Λ(z) = γAr(z) for some γ ∈
GF(qm). Therefore, finding the roots of Ar(z) is equivalent to
finding the roots of Λ(z). Ar(z) is obtained after r iterations.

By (5), calculating Fi+2(z) takes a long division of LP’s.
Using our results in Section III, this takes [1, (di+1 + 1)(di −
di+1 + 1), di+1(di − di+1 + 1)]. Summing for i from 0 to
r − 1, we obtain that the number of inversions to determine

F2(z), . . . , Fr+1(z) is r, while the number of multiplications
satisfies

r−1∑
i=0

(di+1 + 1)(di − di+1 + 1) · · ·

=
r−1∑
i=0

di+1(di − di+1) +
r−1∑
i=0

di + r

≤ (d− 2)(d− 1− r) + r(d− 1)− 1
2
r(r − 1) + r

= (d− 1)(d− 2)− 1
2
r(r − 5).

Similarly, the number of additions can be upper bounded by
(d− 1)(d− 2)− 1

2r(r − 1).
By (6), calculating Ai(z) takes a multiplication of LP’s

and an addition of LP’s. Using our results in Section III, we
see that the complexity of computing Ai(z) is [0, (di−1 −
di)δi, (di−1 − di)δi], with δi = deg Ai(z) ≤ r. Therefore, the
complexity of obtaining A1(z), . . . , Ar(z) is upper bounded
by [0, r(d− 1− r), r(d− 1− r)].

Thus, the complexity of Step 2 using the EEA is
[
r, (d −

1)(d−2)+ 1
2r(2d−3r+3), (d−1)(d−2)+ 1

2r(2d−3r−1)
]

over GF(qm).

B. Complexity of the Berlekamp-Massey algorithm

The BMA for linearized polynomials proceeds as follows
[17], [18]. First, set L = 0, Λ(0)(z) = z, and B(0)(z) = z.
Then, for i = 0 to d− 2, repeat the following.

• Step 1: Calculate the discrepancy ∆ = si +∑L
j=1 Λ(i)

j s
[j]
i−j .

• Step 2: If ∆ = 0, set Λ(i+1)(z) = Λ(i)(z) and
B(i+1)(z) = z[1] ∗B(i)(z) and return.

• Step 3: If ∆ 6= 0, Λ(i+1)(z) = Λ(i)(z)−∆z[1] ∗B(i)(z).
• Step 4: If 2L > i, set B(i+1)(z) = z[1] ∗ B(i)(z) and

return.
• Step 5: If 2L ≤ i, set B(i+1)(z) = ∆−1Λ(i)(z) and

L = i + 1− L.

Step 1 takes L additions and L multiplications. Step 2 only
takes cyclic shifts, and its complexity is hence neglected. Step
3 takes deg B(i)(z) multiplications and deg Λ(i)(z) additions.
The complexity of Step 4 can also be neglected. Step 5 takes
1 inversion and deg Λ(i)(z) multiplications.

Note that Λ(z) = Λ(d−1)(z) is the only outcome of the
algorithm necessary for the decoding algorithm. Therefore, the
BMA can be terminated after Step 3 of the last iteration, which
may save an inversion. Suppose that at iteration i we have
2L ≤ i, then Step 5 is reached and L is updated to L′ =
i+1−L. At iteration i′ = i+1, we thus have 2L′ = 2i′−2L ≥
2i′ − i′ + 1 > i′, and Step 4 is reached instead. Therefore,
Step 5 can only be reached every other iteration, and at most
bd−2

2 c inversions are computed in the algorithm. The degrees
of Λ(r)(z) and B(r) and the parameter L are always upper
bounded by r + 1. Therefore, the complexity of the algorithm
is at most bd−2

2 c inversions, (d − 1)(d − 2) multiplications,
and 1

2 (d− 1)(d− 2) additions.

1083



Thus, the complexity of Step 2 using the BMA is[
d−2
2 , (d− 1)(d− 2), 1

2 (d− 1)(d− 2)
]

over GF(qm).

V. COMPLEXITY OF DECODING GABIDULIN CODES

We now analyze the complexity of the rest of the decoding
algorithm.

Step 1 involves the multiplication of an n-dimensional
vector by an n × (d − 1) matrix. This requires n(d − 1)
multiplications and (n − 1)(d − 1) additions. Due to the
form of the H matrix, we can save memory by only storing
h = (h0, h1, . . . , hn−1) instead of the entire matrix. This
way, some cyclic shifts must also be performed. The memory
requirement can be further reduced when h0, h1, . . . , hn−1

are part of the normal basis B. Indeed, we have hi = h
[i]
0

for 0 ≤ i ≤ n − 1, hence h0 suffices to characterize
the whole H matrix. Thus, the complexity of Step 1 is
[0, n(d− 1), (n− 1)(d− 1)] over GF(qm).

For Step 3, Berlekamp [23] suggested several techniques for
finding the roots of Λ(z) (or equivalently, those of Ar(z)). The
first technique is to consider the LP as a polynomial, and to do
Chien search [24] (making sure that we only consider linearly
independent roots). The second technique is to consider the
LP as a linear operator from GF(q)m to itself. The problem
reduces to finding a basis for the kernel of this operator.

Skachek and Roth [20] gave a probabilistic algorithm for
finding roots of an LP, which reduces the problem into finding
a basis for the image space of another LP. Such basis can
be found by evaluating that polynomial for randomly chosen
elements of GF(qm). The algorithm can be summarized as
follows. Let F (z) be an LP of degree u over GF(qm), whose
roots form a linear subspace of dimension s ≤ u.

• Step 1: Determine a linearized polynomial G(z) of degree
s which has the same roots as F (z).

• Step 2: Compute H(z) such that x[m]−x = G(z)∗H(z).
• Step 3: Set j = 0. Until j = s − 1, ran-

domly select zj ∈ GF(qm) and calculate H(zj). If
H(z0),H(z1), . . . ,H(zj) are linearly independent, up-
date j = j + 1.

• Step 4: Return H(z0),H(z1), . . . ,H(zr−1).

Note that the decoding algorithm for Gabidulin codes
only considers linearized polynomials satisfying deg F (z) =
s. Therefore, G(z) = F (z) and Step 1 can be omit-
ted. Step 2 is a long division of linearized polynomi-
als as described in Section III, which can be done in
[1, (r + 1)(m− r + 1), r(m− r + 1)]. We now consider the
complexity of Step 3. At iteration j, calculating H(zj) can
be done in [0,m− r + 1,m− r]. Checking that H(zj) is
linearly independent from H(z0),H(z1), . . . ,H(zj−1) can be
done using Gaussian elimination in (1, jm, jm) over GF(q).
It was shown in [20] that the expected number of field
elements zj to be evaluated is given by (1 − qj−r)−1. It
follows that the average complexity of Step 3 is upper bounded
by [0, (r + 2)(m− r + 1), (r + 2)(m− r)] over GF(qm) and
[r + 2,mr(r − 1),mr(r − 1)] over GF(q).

Thus, the complexity of Step 3 is
[
1, (2r + 3)(m −

r + 1), (2r + 2)(m − r) + r
]

over GF(qm) and
[r + 2,mr(r − 1),mr(r − 1)] over GF(q).

Step 4 can be done in two different ways. The first way is
to modify the problem into the following system of equations

r−1∑
j=0

E
[−p]
j xp = s[−p]

p for 0 ≤ p ≤ r − 1. (7)

Hence (7) is a system of r linear equations for the r unknowns
xp. It can hence be solved using Gaussian elimination in O(r3)
operations over GF(qm).

The second (and more efficient) way proceeds as follows
[2]. We first need to compute the r × r matrices A and Q
over GF(qm) defined as:

A0,j = Ej (8)

Ai,j = 0 for j < i (9)

= Ai−1,j −
(

Ai−1,j

Ai−1,i−1

)[−1]

Ai−1,i−1 . . .

for 1 ≤ i ≤ j ≤ r − 1, (10)

and

Q0,p = sp (11)

Qi,p = 0 for p > r − 1− i, i ≥ 1 (12)

= Qi−1,p −
(

Qi−1,p+1

Ai−1,i−1

)[−1]

Ai−1,i−1 . . .

for p ≤ r − 1− i, i ≥ 1. (13)

By (8) and (11), the values of A0,j and Q0,p do not require any
computations. We now consider the complexity of calculating
Ai,j and Qi,p in (10) and (13), respectively. We first compute
the terms A−1

i−1,i−1 and Ai−1,i−1

(Ai−1,i−1)[−1] for i ≥ 1. This requires
r − 1 inversions and multiplications. Then each nontrivial
computation of Ai,j or Qi,p reduces to 1 multiplication and
1 addition. There are r(r − 1) such computations. Therefore,
computing A and Q requires r− 1 inversions, (r + 1)(r− 1)
multiplications, and r(r − 1) additions.

Finally, we compute x using

xr−1 =
Qr−1,0

Ar−1,r−1
(14)

xi = A−1
i,i

Qi,0 −
r−1∑

j=i+1

Ai,jxj

 . . .

for 0 ≤ i ≤ r − 2. (15)

By (14), the calculation of xr−1 takes 1 inversion and 1
multiplication. By (15), the calculation of xi requires (r − i)
multiplications and (r−1−i) additions for 0 ≤ i ≤ r−2. Note
that the inversion of Ai,i was already computed during the
calculation of the matrix A. Therefore, computing x requires
1 inversion, 1

2r(r+1) multiplications, and 1
2r(r−1) additions.

Hence, the complexity of Step 4 is
[
r, (r + 1)(3 r

2 −
1), 3

2r(r − 1)
]

over GF(qm).

1084



For Step 5, we have x = hYT . Let us denote the expansion
of the coordinates of x and h with respect to the normal basis
B as X̄ ∈ GF(q)m×r and H̄ ∈ GF(q)m×n, respectively. We
obtain X̄ = H̄YT , or equivalently YT = H̄−LX̄, where
H̄−L ∈ GF(q)n×m such that H̄−LH̄ = In. The H̄−L matrix
can be pre-computed, so this step only requires a matrix mul-
tiplication, i.e. mnr multiplications and additions over GF(q).
Note that if h0, h1, . . . , hn−1 are part of the normal basis B,
then H̄ = (In |0n,m−n)T and hence H̄−L = (In |0n,m−n).
The multiplication H̄−LX̄ reduces to selecting the first n
rows of X̄. This subclass of Gabidulin codes hence saves
computation and memory requirement. Thus, the complexity
of Step 5 is [0,mnr,mnr] over GF(q) for the general case,
[0, 0, 0] if h0, h1, . . . , hn−1 are part of the normal basis B.

Step 6 This step is equivalent to the matrix multiplication
EY, where E ∈ GF(q)m×r is the expansion of the vec-
tor (E0, E1, . . . , Er−1) over the normal basis B. This can
hence be calculated in mnr multiplications and additions over
GF(q). Thus, the complexity of Step 6 is [0,mnr,mnr] over
GF(q).

VI. COMMENTS AND COMPARISON

We comment on the complexity of the decoding algorithm
considered above. The complexities of the EEA and the BMA
are close, with the BMA being more efficient. Furthermore,
using the subclass of Gabidulin codes for which the parity-
check matrix is generated by elements of a normal basis
saves O(mnr) operations over GF(q) and O(mnd) symbols
of memory.

From our results in Section V, we conclude that the overall
complexity of the decoding algorithm is dominated by the
syndrome computation in Step 1 and finding the roots of
Λ(z) in Step 3, and is on the order of O(mr) operations over
GF(qm). More precisely, we consider the case where m = bn
with b ≥ 1, k = Rn = n− d+1 with the code rate satisfying
0 < R < 1, and the error rank satisfying r =

⌊
d−1
2

⌋
. As the

parameters increase, we have d ∼ n(1−R) and r ∼ 1
2n(1−R).

The asymptotic complexity of each step is

• Step 1
[
0, n2(1−R), n2(1−R)

]
,

• Step 2
[
1
2n(1−R), 3

2n2(1−R)2, 9
8n2(1−R)2

]
for the

EEA or
[
1
2n(1−R), n2(1−R)2, 1

2n2(1−R)2
]

for the
BMA,

• Step 3
[
1, n2(1−R)(b− 1

2 (1−R)), n2(1−R)(b− 1
2 (1−

R))
]
,

• Step 4
[
1
2n(1−R), 3

8n2(1−R), 3
8n2(1−R)

]
,

while the complexities of Step 5 and Step 6 are negligible.
The overall complexity of the decoding algorithm using the
BMA is hence approximated by

[
n(1−R), 1

8n2(1−R)(15 +
8b− 7R), 1

8n2(1−R)(11 + 7b− 3R)
]
.

We now compare the complexities of some known decoding
algorithms for Gabidulin codes. The PGZ algorithm has a
complexity on the order of O(r3) operations in GF(qm) [3].
The WB algorithm was shown in [19] to use 1

2 (5n2−3k2+n−
k) multiplications over GF(qm). The asymptotic complexity
of the WB is hence approximated by 1

2n2(5−3R2). Therefore,

the BMA is more efficient for high rates, while the WB
algorithm is more suitable for low rate codes.

REFERENCES

[1] P. Delsarte, “Bilinear forms over a finite field, with applications to coding
theory,” Journal of Combinatorial Theory A, vol. 25, pp. 226–241, 1978.

[2] E. M. Gabidulin, “Theory of codes with maximum rank distance,”
Problems on Information Transmission, vol. 21, no. 1, pp. 1–12, Jan.
1985.

[3] R. M. Roth, “Maximum-rank array codes and their application to
crisscross error correction,” IEEE Trans. Info. Theory, vol. 37, no. 2,
pp. 328–336, March 1991.

[4] E. M. Gabidulin, A. V. Paramonov, and O. V. Tretjakov, “Ideals over a
non-commutative ring and their application in cryptology,” LNCS, vol.
573, pp. 482–489, 1991.

[5] P. Lusina, E. M. Gabidulin, and M. Bossert, “Maximum rank distance
codes as space-time codes,” IEEE Trans. Info. Theory, vol. 49, pp. 2757–
2760, Oct. 2003.

[6] R. Koetter and F. R. Kschischang, “Coding for errors and erasures
in random network coding,” submitted to IEEE Trans. Info. Theory,
available at http://arxiv.org/abs/cs/0703061.

[7] D. Silva, F. R. Kschischang, and R. Koetter, “A rank-metric approach
to error control in random network coding,” submitted to IEEE Trans.
Info. Theory, available at http://arxiv.org/abs/0711.0708.

[8] E. M. Gabidulin, “Optimal codes correcting lattice-pattern errors,”
Problems on Information Transmission, vol. 21, no. 2, pp. 3–11, 1985.

[9] R. M. Roth, “Probabilistic crisscross error correction,” IEEE Trans. Info.
Theory, vol. 43, no. 5, pp. 1425–1438, Sept. 1997.

[10] A. Kshevetskiy and E. M. Gabidulin, “The new construction of rank
codes,” Proc. IEEE Int. Symp. on Information Theory, pp. 2105–2108,
Sept. 2005.

[11] E. M. Gabidulin and P. Loidreau, “Properties of subspace subcodes of
optimum codes in rank metric,” available at http://arxiv.org/pdf/cs.IT/
0607108.

[12] M. Gadouleau and Z. Yan, “Error performance analysis of maximum
rank distance codes,” Submitted to IEEE Transactions on Information
Theory, available at http://arxiv.org/pdf/cs.IT/0612051.

[13] O. Ore, “On a special class of polynomials,” Transactions of the
American Mathematical Society, vol. 35, pp. 559–584, 1933.

[14] ——, “Contribution to the theory of finite fields,” Transactions of the
American Mathematical Society, vol. 36, pp. 243–274, 1934.

[15] E. Berlekamp, “Nonbinary BCH decoding,” Proc. IEEE Int. Symp. on
Info. Theory, 1967.

[16] J. L. Massey, “Shift register synthesis and BCH decoding,” IEEE Trans.
Info. Theory, vol. 15, no. 1, pp. 122–127, Jan. 1969.

[17] G. Richter and S. Plass, “Fast decoding of rank-codes with rank errors
and column erasures,” Proceedings of IEEE ISIT 2004, p. 398, June
2004.

[18] ——, “Error and erasure of rank-codes with a modified Berlekamp-
Massey algorithm,” Proceedings of ITG Conference on Source and
Channel Coding 2004, pp. 203–2112, January 2004.

[19] P. Loidreau, “A Welch-Berlekamp like algorithm for decoding Gabidulin
codes,” Proceedings of the 4th International Workshop on Coding and
Cryptography, 2005.

[20] V. Skachek and R. M. Roth, “Probabilistic algorithm for finding roots
of linearized polynomials,” to appear in Designs, Codes and Cryp-
tography, available at http://csi.ucd.ie/∼vitalys/Papers/Roots-linearized/
linearized-poly-dcc.pdf.

[21] F. MacWilliams and N. Sloane, The Theory of Error-Correcting Codes.
Amsterdam: North-Holland, 1977.

[22] R. Lidl and H. Niederreiter, Finite Fields, ser. Encyclopedia of Mathe-
matics and its Applications, G. Rota, Ed., 1983, vol. 20.

[23] E. Berlekamp, Algebraic Coding Theory. Aegean Park Press, 1984.
[24] R. T. Chien, “Cyclic decoding procedure for the Bose-Chaudhuri-

Hocquenghem codes,” IEEE Trans. Info. Theory, vol. 10, pp. 357–363,
Oct. 1964.

1085


