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Abstract—In this correspondence, we first introduce the concept of ele-
mentary linear subspace, which has similar properties to those of a set of
coordinates. We then use elementary linear subspaces to derive properties
of maximum rank distance (MRD) codes that parallel those of maximum
distance separable codes. Using these properties, we show that, for MRD
codes with error correction capability t, the decoder error probability of
bounded rank distance decoders decreases exponentially with t based on
the assumption that all errors with the same rank are equally likely.

Index Terms—Bounded distance decoder, decoder error probability,
rank metric codes.

I. INTRODUCTION

Although the rank of a matrix has long been known to be a metric
[1], the rank metric was first considered for error control codes (ECCs)
by Delsarte [2]. ECCs with the rank metric [3]–[6] have been receiving
growing attention due to their applications in storage systems [4],
public-key cryptosystems [5], space–time coding [6], and network
coding [7], [8].

The pioneering works in [2]–[4] have established many important
properties of rank metric codes. Independently in [2]–[4], a Singleton
bound (up to some variations) on the minimum rank distance of codes
was established, and a class of codes that achieve the bound with
equality was constructed. We refer to linear or nonlinear codes that
attain the Singleton bound as maximum rank distance (MRD) codes,
and the class of linear MRD codes proposed in [3] as Gabidulin codes
henceforth. Different decoding algorithms for Gabidulin codes were
proposed in [3], [4], [9], and [10].

In this correspondence, we investigate the error performance of
bounded rank distance decoder for MRD codes. A bounded rank
distance decoder for MRD codes with error correction capability t
is guaranteed to correct all errors with rank no more than t. Given a
received word, a bounded rank distance decoder either provides an
estimate for the transmitted codeword or declares decoder failure. A
decoder error occurs when the estimate is not the actual transmitted
codeword. The main results of this correspondence are new upper
bounds on the decoder error probability (DEP) of bounded rank
distance decoders for MRD codes. We emphasize that the DEP con-
sidered herein is conditional: it is the probability that a bounded rank
distance decoder, correcting up to t rank errors, makes an erroneous
correction, given that an error with a fixed rank was made. Our bounds
indicate that the DEP of MRD codes with error correction capability t
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decreases exponentially with t2. To derive our bounds, we assume all
errors with the same rank are equally likely.

We provide the following remarks on our results.
1) Since decoder failures can be remedied by error masking or re-

transmission, decoder errors are more detrimental to the overall
performance and hence often considered separately (see [11]).
This is the main reason we focus on DEP.

2) Note that bounded rank distance decoders guarantee to correct er-
rors with rank up to t. In [12], it was shown that with Gabidulin
codes errors with rank beyond t can be corrected when errors
occur from the same vector space. However, we do not consider
the decoders in [12] and focus on bounded rank distance decoders
instead.

3) Our bounds are analogous to the upper bounds on the error proba-
bility of bounded Hamming distance decoders for maximum dis-
tance separable (MDS) codes in [11] (see [13]–[15] for related
results).

We are able to derive our bounds based on an approach which par-
allels the one in [11]. This was made possible by the concept of ele-
mentary linear subspace (ELS), which has similar properties to those
of a set of coordinates. Using elementary linear subspaces, we also
derive useful properties of MRD codes which parallel those of MDS
codes. Although our results may be derived without the concept of ELS,
we have adopted it in this correspondence since it enables readers to
easily relate our approach and results to their counterparts for Ham-
ming metric codes.

The rest of the correspondence is organized as follows. Section II
gives a brief review of the rank metric, Singleton bound, and MRD
codes. In Section III, we derive some combinatorial properties which
are used in the derivation of our upper bounds. In Section IV, we first
introduce the concept of elementary linear subspace and study its prop-
erties, and then obtain some important properties of MRD codes. In
Section V, we derive our upper bounds on the DEP of MRD codes.

II. PRELIMINARIES

Consider an n-dimensional vector x = (x0; x1; . . . ; xn�1) 2
GF(qm)n. Assume f�0; �1; . . . ; �m�1g is a basis of GF(qm)
over GF(q), then for j = 0; 1; . . . ; n � 1, xj can be expanded to
an m-dimensional column vector (x0;j ; x1;j ; . . . ; xm�1;j)

T over
GF(q) with respect to the basis f�0; �1; . . . ; �m�1g. Let X be
the m � n matrix obtained by expanding all the coordinates of x.
That is, X = fxi;jg

m�1;n�1
i;j=0 where xj = m�1

i=0
xi;j�i. The rank

norm of the vector x (over GF(q)), denoted as rk(x), is defined as
rk(x)

def
= rank(X) [3]. The rank norm of x is also the maximum

number of coordinates in x that are linearly independent over GF(q).
The field GF(qm) may be viewed as a vector space over GF(q). The
coordinates of x thus span a linear subspace of GF(qm), denoted as
(x), such that dim ( (x)) = rk(x). For all x; y 2 GF(qm)n, it is

easily verified that d(x;y)
def
= rk(x � y) is a metric over GF(qm)n,

referred to as the rank metric henceforth [3]. Hence, the minimum
rank distance dR of a code is simply the minimum rank distance over
all possible pairs of distinct codewords. A code with a minimum rank
distance dR can correct all errors with rank up to t = b(dR � 1)=2c.

The minimum rank distance dR of a code of length n over GF(qm)
satisfies dR � dH [3], where dH is the minimum Hamming distance of
the same code. Due to the Singleton bound on the minimum Hamming
distance of block codes [16], the minimum rank distance of a block
code of length n and cardinality M over GF(qm) thus satisfies dR �
n � logq M + 1. In this correspondence, we refer to this bound as
the Singleton bound for rank metric codes, and to codes that attain
the equality as MRD codes. Note that although an MRD code is not
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necessarily linear, this bound implies that its cardinality is a power of
qm.

The number of vectors of rank 0 � u � minfm;ng in GF(qm)n

is given by Nu = n

u
A(m;u), where A(m;u) is defined as follows:

A(m; 0) = 1 andA(m;u) = u�1
i=0 (q

m�qi) for u � 1. The n

u
term

is the Gaussian binomial [17], defined as n

u
= A(n; u)=A(u; u). Note

that n

u
is the number of u-dimensional linear subspaces of GF(q)n

[17].
Note that following the approach in [3], the vector form over GF(qm)

is used to represent rank metric codes although their rank weight is de-
fined by their corresponding m � n code matrices over GF(q). Natu-
rally, rank metric codes can be studied in the matrix form (see [2], [4]).
The vector form is chosen in this correspondence since our results and
their derivations for rank metric codes can be related to their counter-
parts for Hamming metric codes.

III. COMBINATORIAL RESULTS

In this section, we derive some combinatorial properties which will
be instrumental in the derivation of our results in Section V.

Lemma 1: For 0 � u � m, Kqq
mu < A(m;u) � qmu, where

Kq = 1

j=1(1 � q�j). Also, for 0 � u � m � 1, A(m;u) >
q

q�1
Kqq

mu. Finally, for 0 � u � bm=2c, A(m;u) � q �1
q

qmu.
Proof: The upper bound is trivial. We now prove the lower

bounds. We have A(m;u) = qmu u�1
i=0 (1� qi�m) > qmuKq . The

second lower bound follows fromA(m;m�1) = q

q�1
q�mA(m;m).

The third lower bound clearly holds for m = 0 and m = 1. Let
us assume m � 2 henceforth and denote q

A(m;u)
as D(m;u). It can

be easily verified that D(m;u) is an increasing function of u. Thus, it
suffices to show that D(m; bm=2c) � q

q �1
for m � 2. First, if m is

odd,m = 2p+1, it can be easily shown thatD(2p+1; p) < D(2p; p).
Hence, we need to consider only the case where m = 2p, with p � 1.
Let us further show that D(2p; p) is a monotonically decreasing func-
tion of p since

D(2p+ 2; p+ 1)

=
q2p+2

q2p+2 � 1
�

q2p+2

q2p+2 � q
�
q2p+2 � qp+1

q2p+2
D(2p; p)

=
q2p+1(q2p+2 � qp+1)

(q2p+1 � 1)(q2p+2 � 1)
D(2p; p):

The maximum of D(2p; p) is hence given by D(2;1) = q

q �1
.

It is worth noting that Kq above represents the fraction of invertible
m � m matrices over GF(q) as m approaches infinity, and that Kq

increases with q.

Corollary 1: For 0 � t � n, we have n

t
< K�1q qt(n�t).

Proof: By definition, n

t
= A(n; t)=A(t; t). Since A(n; t) �

qnt and by Lemma 1,A(t; t) > Kqq
t , we obtain n

t
< K�1q qt(n�t).

IV. PROPERTIES OF MRD CODES

Many properties of MDS codes are established by studying sets of
coordinates. These sets of coordinates may be viewed as linear sub-
spaces which have a basis of vectors with Hamming weight 1. Simi-
larly, some properties of MRD codes may be established using elemen-
tary linear subspaces (ELS’s), which can be considered as the counter-
parts of sets of coordinates.

A. Elementary Linear Subspaces

It is a well-known fact in linear algebra (see, for example,
[3]) that a vector x of rank rk(x) � u can be represented
as x = (x0; x1; . . . ; xn�1) = (e0; e1; . . . ; eu�1)A, where
ej 2 GF(qm) for j = 0; 1; . . . ; u � 1 and A is a u � n ma-
trix over GF(q) of full rank u. The concept of elementary linear
subspace can be introduced as a consequence of this representation.
However, due to its usefulness in our approach we define the concept
formally and study its properties below from a different perspective.

Definition 1 (Elementary Linear Subspace): A linear subspace V
of GF(qm)n is said to be elementary if it has a basis B consisting
of row vectors in GF(q)n. B is called an elementary basis of V . For
0 � v � n, we defineEv(q

m; n) as the set of all ELS’s with dimension
v in GF(qm)n.

By definition, a linear subspace V with dimension v is an ELS if and
only if it is the row span of a v � nmatrixB over GF(q)with full rank.
Thus there exists a bijection between Ev(q

m; n) and Ev(q; n), and
jEv(q

m; n)j = n

v
. Also, it can be easily shown that a linear subspace

V of GF(qm)n is an ELS if and only if there exists a basis consisting
of vectors of rank 1for V .

Next, we show that the properties of ELS’s are similar to those of
sets of coordinates.

Proposition 1: For all V 2 Ev(q
m; n) there exists �V 2

En�v(q
m; n) such that V � �V = GF(qm)n, where V � �V de-

notes the direct sum of V and �V .
Proof: Clearly, the ELS �V having elementary basis �B such that

B [ �B is a basis of GF(q)n satisfies V � �V = GF(qm)n.

We say that �V is an elementary complement of V . Even though an
elementary complement always exists, we remark that it may not be
unique.

The diameter of a code for the Hamming metric is defined in [16] as
the maximum Hamming distance between two codewords. Similarly,
we can define the rank diameter of a linear subspace.

Definition 2: The rank diameter of a linear subspaceL of GF(qm)n

is defined to be the maximum rank among the vectors in L, i.e.,
�(L)

def
= maxx2Lfrk(x)g.

Proposition 2: For all V 2 Ev(q
m; n), �(V) � v. Furthermore, if

v � m, then �(V) = v.
Proof: Any vectorx 2 V can be expressed as the sum of at most v

vectors of rank 1, hence its rank is upper bounded by v. Thus, �(V) � v
by Definition 2. If v � m, we show that there exists a vector in V with
rank v. Let B = fbig

v�1
i=0 be an elementary basis of V , and consider

y = v�1
i=0 �ibi, where f�igm�1i=0 is a basis of GF(qm) over GF(q).

If we expand the coordinates of y with respect to the basis f�igm�1i=0 ,
we obtainY = bT0 ; . . . ;b

T
v�1;0

T ; . . . ;0T
T

. Since the row vectors
b0;b1; . . . ;bv�1 are linearly independent over GF(q), Y has rank v
and rk(y) = v.

Lemma 2: A vector x 2 GF(qm)n has rank � u if and only if it
belongs to some A 2 Eu(q

m; n).
Proof: The necessity is obvious. We now prove the sufficiency.

Suppose x = (x0; x1; . . . ; xn�1) has rank u, and without loss of gen-
erality, assume its first u coordinates are linearly independent. Thus,
for j = 0; . . . ; n � 1, xj = u�1

i=0 aijxi, where aij 2 GF(q).
That is, x = (x0; x1; . . . ; xu�1)A, where A = faijg

u�1;n�1
i=0;j=0 =

(aT0 ; . . . ; a
T
u�1)

T . Thus x = u�1
i=0 xiai, with ai 2 GF(q)n for

0 � i � u � 1. Let A be the ELS of GF(qm)n spanned by ai’s,
then dim(A) = u and x 2 A. This proof can be easily adapted to the
case where rk(x) < u.
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Let L be a linear subspace of GF(qm)n and let �L be complementary
toL, i.e.,L� �L = GF(qm)n. We denote the projection of x onL along
�L as xL [18]. Remark that x = xL+x�L. Note that for any given linear
subspace L, its complementary linear subspace �L is not unique. Thus,
xL depends on bothL and �L, and is well-defined only when bothL and
�L are given. All the projections in this correspondence are with respect
to a pair of fixed linear subspaces complementary to each other.

Definition 3: Let x 2 GF(qm)n and L be a linear subspace. The
vector x vanishes on L if there exists a linear subspace �L complemen-
tary to L such that x = x�L.

Lemma 3: A vector x 2 GF(qm)n has rank � u if and only if it
vanishes on some B 2 En�u(q

m; n).
Proof: Suppose x has rank � u. By Lemma 2, there exists A 2

Eu(q
m; n) such that x 2 A. Let �A be an elementary complement of

A. Thus, x vanishes on �A by definition. Also, suppose x vanishes on
an ELS �B with dimension greater than n�u. Then there exists an ELS
B with dimension < u such that x 2 B, which contradicts Lemma 2.

The decomposition over two complementary ELS’s induces a map-
ping from GF(qm)n to GF(qm)v .

Definition 4: Let V 2 Ev(q
m; n) be the row span of B with an

elementary complement �V . For any x 2 GF(qm)n, we define rV(x) =
(r0; . . . ; rv�1) 2 GF(qm)v to be rV(x) = xVB

�R, where B�R is
the right inverse of B.

We remark that the rV function is linear and sinceB�R has full rank,
we have rk(rV(x)) = rk(xV) for all x.

Definition 5: For V 2 Ev(q
m; n) the row span of B, let �V be an

elementary complement of V which is the row span of �B. For any x 2
GF(qm)n, we define sV;�V(x) = (rV(x); r�V(x)) 2 GF(qm)n.

Lemma 4: For all x 2 GF(qm)n, rk(sV;�V(x)) = rk(x).
Proof: Note that x = sV;�V(x)B̂ where B̂ = (B; �B)T is an

n � n matrix over GF(q) with full rank. Therefore rk(sV;�V(x)) =
rk(x).

Corollary 2: For all x 2 GF(qm)n and two complementary ELS’s
V and �V , 0 � rk(xV) � rk(x) and rk(x) � rk(xV) + rk(x�V).

It can be easily shown that the second inequality in Corollary 2 can
be strict in some cases. For example, consider x = (1; 1) 2 GF(q2)2.
For appropriate ELS’s V and �V , xV = (1; 0) and x�V = (0; 1).
Clearly, rk(x) < rk(xV) + rk(x�V). However, when V and �V are two
complementary sets of coordinates, the Hamming weight of any vector
x 2 GF(qm)n is the sum of the Hamming weights of the projections
of x on V and �V . Therefore, Corollary 2 illustrates the difference be-
tween ELS’s and sets of coordinates.

B. Properties of MRD Codes

We now derive some useful properties of MRD codes, which will be
instrumental in Section V. These properties are similar to those of MDS
codes. Let C be an MRD code over GF(qm) with length n (n � m),
cardinality qmk , redundancy r = n � k, and minimum rank distance
dR = n � k + 1. We emphasize that C may be linear or nonlinear,
which is necessary for our derivation in Section V. First, we derive the
basic combinatorial property of MRD codes.

Lemma 5 (Basic Combinatorial Property): For anyK 2 Ek(q
m; n)

and its elementary complement �K and any vector k 2 K, there exists
a unique codeword c 2 C such that cK = k.

Proof: Suppose there exist c;d 2 C; c 6= d such that cK = dK.
Then c � d 2 �K, and 0 < rk(c � d) � n � k by Proposition 2,
which contradicts the fact that C is MRD. Then all the codewords lead

to different projections on K. Since jCj = jKj = qmk , for any k 2 K
there exists a unique c such that cK = k.

Lemma 5 allows us to bound the rank distribution of MRD codes.

Lemma 6 (Bound on the Rank Distribution): Let Au be the number
of codewords in C with rank u. Then, for u � dR

Au �
n

u
A(m;u� r): (1)

Proof: By Lemma 3, any codeword c with rank u � dR vanishes
on an ELS with dimension v = n� u. Thus (1) can be established by
first determining the number of codewords vanishing on a given ELS
of dimension v, and then multiplying by the number of such ELS’s,
n

v
= n

u
. For V 2 Ev(q

m; n), V is properly contained in an ELS
K with dimension k since v � k � 1. By Lemma 5, c is completely
determined by cK. Given an elementary basis of K having v elements
that span V , it suffices to determine rK(c). However, cK vanishes on
V , hence v of the coordinates of rK(c) must be zero. By Lemma 3, the
other k � v coordinates must be nonzero, and since rk(cK) = n � v,
these coordinates must be linearly independent. Hence, a codeword that
vanishes on V is completely determined by k� v arbitrary linearly in-
dependent coordinates. There are at most A(m; k�v) = A(m;u�r)
choices for these coordinates, and hence at most A(m;u � r) code-
words that vanish on V .

Note that the exact formula for the rank distribution of linear MRD
codes was derived independently in [2] and [3]. Thus, tighter bounds
on Au can be derived for linear codes. However, our derivation of the
DEP of MRD codes in Section V requires bounds onAu for both linear
and nonlinear MRD codes. Therefore, the exact rank distribution of
linear MRD codes cannot be used, and the bound in (1) should be used
instead.

Definition 6 (Restriction of a Code): For V 2 Ev(q
m; n) (k �

v � n) with elementary basis B and its elementary complement �V ,
CV = frV(c)jc 2 Cg is called the restriction of C to V .

It is well known that a punctured MDS code is an MDS code [16].
We now show that the restriction of an MRD code to an ELS is also
MRD.

Lemma 7 (Restriction of an MRD Code): For all ELS V with dimen-
sion v (k � v � n), CV is an MRD code with length v, cardinality
qmk , and minimum rank distance dR = v � k + 1 over GF(qm).

Proof: For c 6= d 2 C , consider x = c � d. By the property of
rV function, we have

rk(rV(c)� rV(d)) = rk(rV(c� d)) = rk(xV)

� rk(x)� rk(x�V) �n� k + 1� (n� v) = v � k + 1:

Therefore, CV is a code over GF(qm) with length v, cardinality qmk ,
and minimum rank distance � v� k+1. The Singleton bound on CV
completes the proof.

V. PERFORMANCE OF MRD CODES

We evaluate the error performance of MRD codes using a bounded
rank distance decoder. We assume that the errors are additive and that
all errors with the same rank are equiprobable. A bounded rank distance
decoder produces a codeword within rank distance t = b(dR � 1)=2c
of the received word if it can find one, and declares a decoder failure
if it cannot. In the following, we first derive bounds on the DEP as-
suming the error has rank u. In the end, we derive a bound on the
DEP that does not depend on u. We denote the probabilities of de-
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coder error and failure for the bounded rank distance decoder — for
error correction capability t and an error of rank u — as PE(t;u)
and PF (t;u), respectively. Clearly, PF (t;u) = PE(t;u) = 0 for
u � t and PE(t;u) = 0 and PF (t;u) = 1 for t < u < dR � t,
which occurs only if dR = 2t+2. Thus we investigate the case where
u � dR � t and PE(t;u) characterizes the performance of the code,
as PE(t;u) + PF (t;u) = 1.

Since our derivation below is transparent to the transmitted code-
word, we assume without loss of generality that the all-zero vector is a
codeword and is transmitted. Thus, the received word can be any vector
with rank u with equal probability. We call a vector decodable if it lies
within rank distance t of some codeword. If Du denotes the number of
decodable vectors of rank u, then for u � dR � t we have

PE(t;u) =
Du

Nu

=
Du

n

u
A(m;u)

: (2)

Hence, the main challenge is to derive upper bounds on Du. We con-
sider two cases, u � dR and dR � t � u < dR, separately.

Proposition 3: For u � dR, then Du �
n

u
A(m;u� r)Vt, where

Vt =
t

i=0Ni is the volume of a ball of rank radius t.
Proof: Any decodable vector can be uniquely written as c + e,

where c 2 C and rk(e) � t. For a fixed e, C + e is an MRD code,
which satisfies (1). Therefore, the number of decodable words of rank
u is at most n

u
A(m;u � r), by Lemma 6, multiplied by the number

of error vectors, Vt.

Lemma 8: Suppose y = (y0; . . . ; yv�1) 2 GF(qm)v has
rank w. Then there exist u

s�w
A(m � w; s � w)qwu vectors

z = (z0; . . . ; zu�1) 2 GF(qm)u such that x = (y; z) 2 GF(qm)u+v

has rank s.
Proof: Let be an (m � w)-dimensional subspace of GF(qm)

such that � (y) = GF(qm). We can thus express z as z = a+b,
where ai 2 and bi 2 (y) for all i. Since rk(x) = rk(y) + rk(a),
we have rk(a) = s�w, and hence there are u

s�w
A(m�w; s�w)

possible choices for a. Also, there are qwu choices for the vector b.

We also obtain a bound similar to the one in Proposition 3 for dR �
t � u < dR.

Proposition 4: For dR � t � u < dR, then Du <
q

q �1
n

u
(qm �

1)u�rVt.
Proof: Recall that a decodable vector of rank u can be expressed

as c+ e, where c 2 C and rk(e) � t. This decodable vector vanishes
on an ELS V with dimension v = n� u by Lemma 3. We have w

def
=

rk(rV(c)) � t by Corollary 2.CV is an MRD code by Lemma 7, hence
w � dR � u. A codeword c 2 C is completely determined by cV by
Lemma 7. Denoting r0 = r� u, the number of codewords in CV with
rank w is at most v

w
A(m;w� r0) by Lemma 6. For each codeword c

such that rk(rV(c)) = w, we count the number of error vectors e such
that rV(c) + rV(e) = 0. Suppose that e has rank s (w � s � t), then
sV;�V(e) = (�rV(c); r�V(e)) has rank s by Lemma 4. By Lemma 8,
there are at most u

s�w
A(m � w; s � w)qwu choices for r�V(e), and

hence as many choices for e.

The total number DV of decodable vectors vanishing on V is then at
most

DV �

t

w=d �u

v

w
A(m;w � r

0)

�

t

s=w

u

s� w
A(m� w; s� w)qwu: (3)

We have A(m;w� r+u) � (qm� 1)w�r+u and qwuA(m�w; s�
w) � qw(u�s+w)A(m; s � w). Equation (3) implies

DV � (qm � 1)u�r
t

s=w

s

w=d �u

v

w

u

s� w

� qw(u�s+w)A(m; s� w)(qm � 1)w

< (qm � 1)u�r
t

s=d �u

q
ms

�

s

w=d �u

v

w

u

s� w
q
w(u�s+w)

:

Using [17, p. 225]: s

w=0
v

w

u

s�w
qw(u�s+w) = v+u

s
, we obtain

DV < (qm � 1)u�r t

s=d �u
qms n

s
. By Lemma 1, we find that

DV < (qm � 1)u�r
t

s=d �u

q2

q2 � 1
A(m; s)

n

s

<
q2

q2 � 1
(qm � 1)u�rVt:

The result follows by multiplying the bound on DV by n

v
, the

number of ELS’s of dimension v.

Finally, we can derive our bounds on the DEP.

Proposition 5: For dR � t � u < dR, the DEP satisfies

PE(t;u) <
q2

q2 � 1

(qm � 1)u�r

A(m;u)
Vt: (4)

For u � dR, the DEP satisfies

PE(t;u) <
A(m;u� r)

A(m;u)
Vt: (5)

Proof: The bound in (4) follows directly from (2) and Proposition
4, while the bound in (5) follows directly from (2) and Proposition 3.

The result may be weakened in order to find a bound on the DEP
in exponential form which depends on t only. In order to obtain this
bound, we need a bound on Vt first.

Lemma 9: For 0 � t � minfn;mg, Vt � n

t
qmt <

K�1
q qt(m+n�t).

Proof: Without loss of generality, assume the ball is centered at
zero. From Lemma 2, every vector x in the ball belongs to some ELS V
with dimension t. Since jVj = qmt and jEt(q

m; n)j = n

t
, it follows

that Vt �
n

t
qmt. By Corollary 1, we have n

t
< K�1

q qt(n�t), and
hence Vt < K�1

q qt(m+n�t).

Proposition 6: For u � dR � t, the DEP satisfies

PE(t;u) <
q�t

K2
q

: (6)

Proof: First suppose that u � dR. Applying A(m;u) > Kqq
mu

in Lemma 1 and Lemma 9 to (5), we obtain PE(t;u) <

K�2
q q�mr+t(m+n�t). Since n � m and 2t � r, it follows

that PE(t;u) < K�2
q q�t . For dR � t � u < dR, applying

A(m;u) > q

q�1
Kqq

mu in Lemma 1 and Lemma 9 to (4), we obtain

PE(t;u) <
q (q�1)

q(q �1)
K�2
q q�mr+t(m+n�t) < K�2

q q�t .

Based on the proof above, it is clear that the bound in Proposition 6
is less tight than those in Proposition 5. However, the bound in Propo-
sition 6 does not depend on the rank of the error at all. This implies that
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the bound applies to any error vector provided the errors with the same
rank are equiprobable. Based on conditional probability, we can easily
establish the following corollary.

Corollary 3: For an MRD code with dR = 2t+ 1 and any additive
error such that the errors with the same rank are equiprobable, the DEP
of a bounded rank distance decoder satisfies PE(t) < K�2q q�t .
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On the Probability Distribution of Superimposed
Random Codes

Bernd Günther

Abstract—In this correspondence, a systematic study of the probability
distribution of superimposed random codes is presented through the use
of generating functions. Special attention is paid to the cases of either uni-
formly distributed but not necessarily independent or nonuniform but in-
dependent bit structures. Recommendations for optimal coding strategies
are derived.

Index Terms—Database indexing, false drop estimates, generating func-
tions, probability distribution, superimposed coding.

I. INTRODUCTION

Chemical structure retrieval systems are frequently presented with
the task to produce a list of all stored chemical graphs containing a pre-
scribed subgraph [1], [2]. Due to the absence of a linear order among
the stored data, tree-based search strategies fail, and a sequential search
has to be performed. To accelerate this time-consuming process, the ac-
tual graph theoretical substructure match is preceded by prescreening:
the entire database is matched against a library of simple but common
descriptors, and the validity of descriptors is recorded in a bitstring
for each stored structure. Suitable choices for descriptors are small
chemical subgraphs containing only few vertices, graph diameters, ring
sizes, or any other property that passes from subgraphs to supergraphs.
When a query structure is submitted to the system, the descriptors are
evaluated for this query structure resulting in a query bitstring. Only
those stored structures are candidates for a match where each bit is
turned on in all those positions where the query bits are turned on and
will be subjected to the expensive graph theoretical matching algo-
rithm.

For example, let us consider the compounds in Fig. 1. A chemist
might ask for a list of all structures in our database containing 2-(cy-
clohexylmethyl)naphthalene, which is too complex to be one of the
index descriptors. However, any matching structure must necessarily
contain cyclohexane and naphthalene, and these might be indexed. We
will produce an intermediate result set that also contains 2-(2-cyclo-
hexylethyl)naphthalene, which is not in accordance with the original
query specification and must be singled out by graph matching.

The Beilstein database of organic compounds contains around ten
million structures, each a chemical graph of up to 255 vertices, and the
number of descriptors will have the magnitude of one thousand. With
such characteristics, the preevaluated bitstrings will consume a consid-
erable amount of storage and hence of processing time. On the other
hand, one may expect the 1 bits to be relatively scarce, whence it should
be possible to compress the bitstrings without losing too much infor-
mation. Thus, we are looking for a map  : _IN ! _In, _I = f0; 1g
transforming bitstrings of length N into strings of length n. How-
ever, we have to observe the partial order relation � � �0 between
bitstrings defined such that the bits should satisfy �(i) � �0(i) at
all positions i. Since we want to use the compressed strings in the
same manner (by bitmasking) as the original ones, the transformation
must be monotone: � � �0 )  (�) �  (�0), and in particular,
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