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Packing and Covering Properties of Subspace Codes
for Error Control in Random Linear Network Coding
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Abstract—Codes in the projective space and codes in the Grass-
mannian over a finite field—referred to as subspace codes and con-
stant-dimension codes (CDCs), respectively—have been proposed
for error control in random linear network coding. For subspace
codes and CDCs, a subspace metric was introduced to correct both
errors and erasures, and an injection metric was proposed to cor-
rect adversarial errors. In this paper, we investigate the packing
and covering properties of subspace codes with both metrics. We
first determine some fundamental geometric properties of the pro-
jective space with both metrics. Using these properties, we then de-
rive bounds on the cardinalities of packing and covering subspace
codes, and determine the asymptotic rates of optimal packing and
optimal covering subspace codes with both metrics. Our results not
only provide guiding principles for the code design for error con-
trol in random linear network coding, but also illustrate the dif-
ference between the two metrics from a geometric perspective. In
particular, our results show that optimal packing CDCs are op-
timal packing subspace codes up to a scalar for both metrics if and
only if their dimension is half of their length (up to rounding). In
this case, CDCs suffer from only limited rate loss as opposed to sub-
space codes with the same minimum distance. We also show that
optimal covering CDCs can be used to construct asymptotically op-
timal covering subspace codes with the injection metric only.

Index Terms—Constant-dimension codes (CDCs), covering,
error control codes, injection metric, network coding, packing,
random linear network coding, subspace codes, subspace metric.

I. INTRODUCTION

D UE to its vector-space preserving property, random linear
network coding [1], [2] can be viewed as transmitting

subspaces over an operator channel [3]. As such, error control
for random linear network coding can be modeled as a coding
problem, where codewords are subspaces and the distance is
measured by either the subspace distance [3] or the injection
metric [4]. Codes in the projective space, referred to as subspace
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codes henceforth, and codes in the Grassmannian, referred to as
constant-dimension codes (CDCs) henceforth, have been both
investigated for error control in random linear network coding.
Using CDCs is sometimes advantageous since the fixed dimen-
sion of CDCs simplifies the network protocol somewhat [3].

The construction and properties of CDCs thus have attracted
a lot of attention. Different constructions of CDCs have been
proposed [3], [5]–[7]. Bounds on CDCs based on packing prop-
erties are investigated (see, for example, [3], [6], [8], and [9]),
and the covering properties of CDCs are investigated in [7]. The
construction and properties of subspace codes have received less
consideration, and previous works on subspace codes (see, for
example, [10]–[12]) have focused on the packing properties. In
[10], bounds on the maximum cardinality of a subspace code
with the subspace metric, notably the counterpart of the Gilbert
bound, are derived. Another bound relating the maximum car-
dinality of CDCs to that of subspace codes is given in [11].
Bounds and constructions of subspace codes are also investi-
gated in [12]. Despite the previous works, two significant prob-
lems remain open. First, despite the aforementioned advantage
of CDCs, what is the rate loss of CDCs as opposed to subspace
codes of the same minimum distance and hence error correc-
tion capability? Since random linear network coding achieves
multicast capacity with probability exponentially approaching

with the length of the code [1], the asymptotic rates of sub-
space codes and asymptotic rate loss of CDCs are both signif-
icant. The second problem involves the two metrics that have
been introduced for subspace codes: What is the difference be-
tween the two metrics proposed for subspace codes and CDCs
beyond those discussed in [4]? Note that the two questions are
somewhat related, since the first question is applicable for both
metrics. The answers to these questions are significant to the
code design for error control in random linear network coding.

Aiming to answer these two questions, our work in this paper
focuses on the packing and covering properties of subspace
codes. Packing and covering properties not only are interesting
in their own right as fundamental geometric properties, but also
are significant for various practical purposes. First, our work
is motivated by their significance to design and decoding of
subspace codes. Since a code can be viewed as a packing of its
ambient space, the significance of packing properties is clear.
In contrast, the importance of covering properties is more subtle
and deserves more explanation. For example, a class of nearly
optimal CDCs, referred to as liftings of rank metric codes, have
covering radii no less than their minimum distance and thus
are not optimal CDCs [7]. This example shows how a covering
property is relevant to the design of subspace codes. The
covering radius also characterizes the decoding performance
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of a code, since it is the maximum weight of a decodable error
by minimum distance decoding [13] and also has applications
to decoding with erasures [14]. Second, covering properties
are also important for other reasons. For example, covering
properties are important for the security of keystreams against
cryptanalytic attacks [15].

Our main contributions of this paper are that for both met-
rics, we first determine some fundamental geometric properties
of the projective space, and then use these properties to derive
bounds and to determine the asymptotic rates of subspace codes
based on packing and covering. Our results provide some an-
swers to both open problems above. First, our results show that
for both metrics optimal packing CDCs are optimal packing
subspace codes up to a scalar if and only if their dimension
is half of their length (up to rounding), which implies that in
this case CDCs suffer from a limited rate loss as opposed to
subspace codes with the same minimum distance. Furthermore,
when the asymptotic rate of subspace codes is fixed, the rel-
ative subspace distance of optimal subspace codes is twice as
much as the relative injection distance. Second, our results illus-
trate the difference between the two metrics from a geometric
perspective. Above all, the projective space has different geo-
metric properties under the two metrics. The different geometric
properties further result in different asymptotic rates of covering
codes with the two metrics. With the injection metric, optimal
covering CDCs can be used to construct asymptotically optimal
covering subspace codes. However, with the subspace metric,
this does not hold.

To the best of our knowledge, our results on the geometric
properties of the projective space are novel, and our investiga-
tion of covering properties of subspace codes is the first one
in the literature. Note that our investigation of covering prop-
erties differs from the study in [7]: while how CDCs cover the
Grassmannian was investigated in [7], we consider how sub-
space codes cover the whole projective space in this paper. Our
investigation of packing properties leads to tighter bounds than
the Gilbert bound in [10], and our relation between the optimal
cardinalities of subspace codes and CDCs is also more precise
than that in [11]. Our asymptotic rates based on packing prop-
erties also appear to be novel.

The rest of the paper is organized as follows. Section II re-
views necessary background on subspace codes, CDCs, and re-
lated concepts. In Section III, we investigate the packing and
covering properties of subspace codes with the subspace metric.
In Section IV, we study the packing and covering properties
of subspace codes with the injection metric. Finally, Section V
summarizes our results and provides future work directions.

II. PRELIMINARIES

We refer to the set of all subspaces of with dimension
as the Grassmannian of dimension and denote it as ;

we refer to as the projective space.
We have , where is the
Gaussian binomial [16]. A very instrumental result [17] about
the Gaussian binomial is that for all

(1)

where represents the ratio of non-
singular matrices in as tends to infinity. By
definition, , where is the Euler func-
tion. Furthermore, by the pentagonal number theorem,

[18]. Finally, we also have
, where is the partition number of

[16].
For , both the subspace metric [3, eq. (3)]

and injection metric
[4, Def. 1]

(2)

(3)

are metrics over . For all

(4)

and if and only if ,
and if and only if or . A
subspace code is a nonempty subset of . The minimum
subspace (respectively, injection) distance of a subspace code
is the minimum subspace (respectively, injection) distance over
all pairs of distinct codewords. A subset of is called a
CDC. A CDC is thus a subspace code whose codewords have
the same dimension. Since for CDCs ,
we focus on the injection metric when considering CDCs.
We denote the maximum cardinality of a CDC in
with minimum injection distance as . We have

, and
it is shown [7], [9] for and

(5)

The lower bound on in (5) is implicit from the
code construction in [7], and the upper bounds on
in (5) are from [3]. Thus, CDCs in with
minimum injection distance and cardinality
proposed in [3] are optimal up to a scalar; we refer to these
CDCs as KK codes henceforth. The covering radius in
of a CDC is defined as . We also de-
note the minimum cardinality of a CDC with covering radius

in as [7]. It was shown in [7] that
is on the order of , and an asymp-

totically optimal construction of covering CDCs is designed in
[7, Prop. 12].

III. PACKING AND COVERING PROPERTIES OF SUBSPACE

CODES WITH THE SUBSPACE METRIC

A. Properties of Balls With Subspace Radii

We first investigate the properties of balls with subspace radii
in , which will be instrumental in our study of packing
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and covering properties of subspace codes with the subspace
metric. We first derive bounds on below. In order to

simplify notations, we denote , which is re-
lated to the Jacobi theta function
by [19]. We remark that
for all , and that is a decreasing function of and
approaches as tends to infinity.

Lemma 1: For all ,
.

Proof: We have

by (1), which proves the lower bound. Also,

and hence

by (1). Therefore

We observe that by (1) and Lemma 1, is the same
as up to a scalar when or .
That is, the volume of , which is equal to that of

when , dominates the volumes
of other Grassmannians. This geometric property has significant
implication to the packing properties of subspace codes.

We now determine the number of subspaces at a given sub-
space distance from a fixed subspace. Let us denote the number
of subspaces with dimension at subspace distance from a
subspace with dimension as .

Lemma 2: is given by when
is an integer, and otherwise.

Proof: For and ,
if and only if . Thus, there are choices
for . The subspace is then completed in
ways.

We remark that this result in Lemma 2 is implicitly contained
in [10, Th. 5] without an explicit proof. It is formally stated here
because it is important to the results in this paper. We also denote
the volume of a ball with subspace radius around a subspace
with dimension as .

We now derive bounds on the volume of a ball with subspace
radius. Since for all and , we only
consider . Also, we assume , for only this case
will be needed in this paper.

Proposition 1: For all , , , and ,
,

where

for
for
for .

The proof of Proposition 1 is given in part A of the Appendix.
We remark that the lower and upper bounds on in Propo-
sition 1 are tight up to a scalar, and that depends on both

and . We also observe that decreases with for .
That is, the volume of a ball around a subspace of dimension

decreases with . This observation is significant
to the covering properties of subspace codes with the subspace
metric. Fig. 1, where we show for ,

, , and , illustrates this observation.

B. Packing Properties of Subspace Codes
With the Subspace Metric

We are interested in packing subspace codes used with the
subspace metric. The maximum cardinality of a code in
with minimum subspace distance is denoted as .
Since , we assume henceforth.

We can relate to . First, we re-
mark that for
all , , and . The claim is obvious for ,
and easily shown for by using (1). We also re-
mark that . For all

, we denote the maximum cardinality of
a code with minimum subspace distance and codewords
having dimensions in as . For ,

. Proposition 2 compares
to and shows that

is a good approximate of .

Proposition 2: For ,
and for ,

. Also, we have

Proof: Let be a code in with minimum
subspace distance . For , we have

; therefore, there is at most
one codeword with dimension less than . Similarly,

, there-
fore there is at most one codeword with dimension greater
than . Thus, for

and . Since the

code has minimum subspace distance
, we obtain .

A CDC in with minimum injection dis-
tance has minimum subspace distance , and
hence for all . Also,
the codewords with dimension in a code with min-
imum subspace distance form a CDC in
with minimum injection distance at least , and hence

.

We compare our lower bound on in
Proposition 2 to the Gilbert bound in [10, Th. 5]. The
latter shows that , where
the average volume is taken over all
subspaces in . Using the bounds on
in Proposition 1, it can be shown that this lower bound
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is at most .
On the other hand, Proposition 2 and (5) yield

. The ratio
between our lower bound and the Gilbert bound is hence at
least for all and . Therefore,
our lower bound in Proposition 2 is tighter than the Gilbert
bound in [10, Th. 5].

The lower bound in Proposition 2 is further tightened below
by considering the union of CDCs in different Grassmannians.

Proposition 3: For all , , and , we have
, where

.

Proof: For , let be a CDC in
with minimum subspace distance and car-

dinality and let . We have
, and we now prove that has minimum sub-

space distance at least by considering two distinct codewords
and . First, if , then

; second, if and , then
by the minimum distance of .

In order to characterize the rate loss by using CDCs instead
of subspace codes, we now compare the cardinalities of optimal
subspace codes and optimal CDCs with the same minimum sub-
space distance . Note that the bounds on the cardinalities of op-
timal CDCs in (5) assume the injection metric for CDC. When

is even, a CDC with a minimum subspace distance has a
minimum injection distance . When is odd, a CDC with a
minimum subspace distance has a minimum injection dis-
tance . Thus, a CDC has a minimum subspace dis-
tance at least if and only if it has minimum injection distance at
least . Hence, we compare and
in Proposition 4.

Proposition 4 (Comparison Between Optimal Subspace
Codes and CDCs in the Subspace Metric): For
and

(6)

Proof: By (1), Proposition 2, and (5), we have

Also, Proposition 2 and (1) also lead to

where . Since and , we
obtain

(7)

where (7) follows from (5).

We now compare the relation between and
in Proposition 4 to the one determined in

[11, Th. 5]. The latter only provides the following lower
bound on :

. The Singleton bound on CDCs [3] indicates that
, which in turn

satisfies
by (1). Hence, the lower bound on in [11, Th. 5]
is at most . The ratio
between our lower bound in Proposition 4 and the lower bound
in [11, Th. 5] is at least ,
and thus our lower bound in Proposition 4 is tighter than the
bound in [11, Th. 5] for all cases.

The bounds in Proposition 4 help us determine the asymp-
totic behavior of . We first define the rate of a sub-
space code as . We note that this defini-
tion is combinatorial, and differs from the rate introduced in [3]
for CDCs. The rate defined in [3] also accounts for the channel
usage, but it seems appropriate for CDCs only. On the other
hand, our rate depends on only the cardinality of the code, and
hence is more appropriate to compare general subspace codes,
since all the subspaces are treated equally regardless of their di-
mension. Finally, the rate defined in [3] can be derived from our
rate defined here. Using the normalized parameters

and where is the minimum subspace distance
of a code, the asymptotic rate of a subspace code

and of a CDC of given dimen-

sion can be
easily determined.

Proposition 5 (Asymptotic Rate of Packing Subspace Codes
in the Subspace Metric): For , .
For or , ; for

, ; for ,
.

Proof: First, (5) and Lemma 1 yield
for . Since

, we also obtain

for . Second, (6) for and (5)
yield .
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Propositions 4 and 5 provide several important insights. First,
Proposition 4 indicates that optimal CDCs with dimension being
half of the block length up to rounding ( and

) are optimal subspace codes up to a scalar. In this case,
the optimal CDCs have a limited rate loss as opposed to optimal
subspace codes with the same error correction capability. When

, the rate loss suffered by optimal CDCs increases
with . Proposition 5 indicates that using CDCs with
dimension leads to a decrease in rate on the
order of , where . Since the
rate loss increases with , using a CDC with a dimension
further from leads to a larger rate loss.

The conclusion above can be explained from a combinatorial
perspective as well. When or , by Lemma
1, is the same as up to scalar. Thus,
it is not surprising that the optimal packings in are the
same as those in up to scalar.

We also comment that the asymptotic rates in Proposition 5
for subspace codes come from Singleton bounds. The asymp-
totic rate is achieved by KK codes. The asymptotic
rate is similar to that for rank metric codes [20]. This
can be explained by the fact that the asymptotic rate is
also achieved by KK codes when , whose cardinalities
are equal to those of optimal rank metric codes.

In Table I, we compare the bounds on derived in
this paper with each other and with existing bounds in the litera-
ture, for , , and ranging from to . We consider
the lower bound in Proposition 2, its refinement in Proposition
3, and the lower bounds in [10] and [11, Th. 5] described above,
and the upper bound comes from Proposition 2. Note that Propo-
sition 4 is not included in the comparison since its purpose is
to compare the cardinalities of optimal subspace codes and op-
timal CDCs with the same minimum subspace distance. Since
bounds in Propositions 2 and 3 and [11, Th. 5] depend on car-
dinalities of either related CDCs or optimal CDCs, we use the
cardinalities of CDCs with dimension proposed
in [11] and [7] as lower bounds on and the upper
bound in [9] on to derive the numbers in Table I.
For example, the lower bound of Proposition 2 is simply given
by the construction in [11] when and , and given
by the construction in [7] for other values of . Table I illustrates
our lower bounds in Propositions 2 and 3 are tighter than those
in [10] and [11, Th. 5]. The cardinalities of CDCs with dimen-
sion in [11] and [7], displayed as the lower bound in
Proposition 2, are quite close to the lower bound in Proposition
3, supporting our conclusion that the rate loss suffered by prop-
erly designed CDCs is smaller when the dimension is close to

. Also, the lower and upper bounds in Proposition 2 depend
on , and hence the bounds for and are
the same. Finally, the tightness of the bounds improves as the
minimum distance of the code increases, leading to very tight
bounds for .

C. Covering Properties of Subspace Codes
With the Subspace Metric

We now consider the covering properties of subspace codes
with the subspace metric. The subspace covering radius in

of a code is defined as .
We denote the minimum cardinality of a subspace code in

with subspace covering radius as . Since
and , we assume

henceforth. We determine below the minimum
cardinality of a code with subspace covering radius .

Proposition 6: For , .
Proof: For all , there exists such

that and , and hence
. Therefore, one subspace cannot cover the

whole with radius , hence .
Let , then for all ,

. Thus, has
covering radius and for all .

We thus consider henceforth. Proposition 7
can be viewed as the sphere covering bound for subspace codes
with the subspace metric, as it considers how a subspace code
covers each Grassmannian for any .

Proposition 7 (Sphere Covering Bound for the Subspace
Metric): For all , , and ,

, where the minimum is taken over all integer
sequences satisfying for all and

for .
Proof: Let be a subspace code with covering radius

and let denote the number of subspaces with dimension in
. Then, for all . All subspaces with

dimension are covered; however, a codeword with dimension
covers exactly subspaces with dimension ,

hence for .

We remark that the lower bound in Proposition 7 is based
on the optimal solution to an integer linear program and hence
determining this lower bound is computationally infeasible for
large parameter values.

We now derive upper bounds on . Since
is equal to up to a scalar, the main

issue with designing covering subspace codes is to cover
. In Proposition 8, we use subspaces in

in order to cover the Grassmannian for ,
i.e., is covered using subspaces in .
This choice is in fact asymptotically optimal, as we will show
in Proposition 10.

The upper bound in Proposition 8 is based on the universal
greedy algorithm in [14, Th. 12.2.1] to construct covering codes,
which we briefly review below for subspaces. The algorithm
begins by selecting as the first codeword one of the subspaces
which cover the most subspaces, and then keeps adding sub-
spaces to the code. Each new codeword is selected as to cover
the most subspaces not yet covered by the code (if several sub-
spaces cover the same number of subspaces, then the new code-
word is chosen randomly). The algorithm eventually stops once
all subspaces are covered. Although the cardinality of the code
obtained by this algorithm is not constant, an upper bounded on
its value is given in [14, Th. 12.2.1]. The bound in Proposition 8
adapts this algorithm to cover each Grassmannian
for by subspaces in . We remark that the
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Fig. 1. Volume of a ball of subspace radius in ���� ��� as a function of the dimension of its center and of its radius.

TABLE I
COMPARISON OF BOUNDS ON � ������ �� FOR � FROM 2 TO 10

bound in Proposition 8 is only semiconstructive, as it determines
an algorithm to construct covering subspace codes but does not
design the actual codes. We remark that the bound in Proposi-
tion 8 can be further tightened by using the bounds on the greedy
algorithm derived in [21] and [22].

Proposition 8: For all , , ,

, where

Proof: We show that there exists a code with cardinality

and covering radius . We choose to be
in the code, hence all subspaces with dimension are
covered. For , let be the binary
matrix whose rows represent the subspaces and
whose columns represent the subspaces , and
where if and only if . Then, there are
exactly ones on each row and

ones on each column. By [14, Th. 12.2.1],

there exists an submatrix of with no all-zero rows.
Thus, all subspaces of dimension can be covered using
codewords. Summing for all , all subspaces with dimension

can be covered with subspaces.
Similarly, it can be shown that all subspaces with dimension

can be covered with
subspaces.

In Proposition 9, we design an explicit construction of a sub-
space covering code by combining entire Grassmannians.

Proposition 9: For all , , and , let

and . Then, the code
has subspace covering radius , and hence

.
Proof: We prove that covers all subspaces

with dimension . First, all subspaces with

dimension
are covered by the subspace with dimension . Second, for

all with dimension
, there exists with di-

mension such that . Thus,
. Similarly, for all

with dimension
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, there exists with dimension
such that . Thus,

. Therefore, covers all
subspaces with dimension . Similarly, all the subspaces
with dimension are covered by .

Using the bounds derived above, we now determine the
asymptotic behavior of . We define

, where . We note that this
definition of asymptotic rate is from a combinatorial perspec-
tive again.

Proposition 10 (Asymptotic Rate of Covering Sub-
space Codes in the Subspace Metric): For ,

. For , .
Proof: By Proposition 6, for .

Let be a KK code in with minimum subspace

distance and cardinality . Then, any
code with subspace covering radius and car-
dinality covers all codewords in ; however, any
codeword in only covers at most one codeword in . Hence,

, which asymptotically be-
comes .

Also, by Proposition 8, it can be easily shown that

which asymptotically becomes .

The proof of Proposition 10 indicates that the minimum cardi-
nality of a covering subspace code is on the order of

. However, a covering subspace code is easily
obtained by taking the union of optimal covering CDCs (in their
respective Grassmannians) for all dimensions, leading to a code
with cardinality . By [7, Prop. 11],

is on the order of . Hence,

the code has a cardinality on the order of ,
which is greater than . Thus, a union of op-
timal covering CDCs (in their respective Grassmannians) does
not result in asymptotically optimal covering subspace codes
with the subspace metric.

IV. PACKING AND COVERING PROPERTIES OF SUBSPACE CODES

WITH THE INJECTION METRIC

A. Properties of Balls With Injection Radii

We first investigate the properties of balls with injection radii
in , which will be instrumental in our study of packing
and covering properties of subspace codes with the injection
distance. We denote the number of subspaces with dimension

at injection distance from a subspace with dimension as
.

Lemma 3: .
Hence, for and

for .
Proof: If and , then

if and only if . Therefore,

, and the formula for
is easily obtained from Lemma 2.

Lemma 3 indicates that the injection metric satisfies a
strengthened triangular inequality: for any and

, we have . We denote the
volume of a ball with injection radius around a subspace with
dimension as . Although
the volume of a ball depends on its radius and on the
dimension of its center, we derive below bounds on
which only depend on its radius.

Proposition 11: For all , , , and ,
.

The proof of Proposition 11 is given in
part B of the Appendix. We remark that the bounds
in Proposition 11 are tight up to a scalar, which will greatly
facilitate our asymptotic study of subspace codes with the
injection metric. Unlike the bounds on the volume of a ball
with subspace radius in Proposition 1, the lower and upper
bounds in Proposition 11 do not depend on . This illustrates a
clear geometric distinction between the subspace and injection
metrics.

B. Packing Properties of Subspace Codes
With the Injection Metric

We are interested in packing subspace codes used with the in-
jection metric. The maximum cardinality of a code in
with minimum injection distance is denoted as .
Since , we assume henceforth.
When , the maximum cardinality of a code with min-
imum injection distance is determined and a code with max-
imum cardinality is given. For all , we denote
the maximum cardinality of a code with minimum injection dis-
tance and codewords having dimensions in as .
For , we denote

. Proposition 12 relates to and
shows that determining is equivalent to deter-
mining .

Proposition 12: For , and for
, .

Proof: Let be a code in with min-
imum injection distance and let . We have

,
therefore there is at most one codeword with dimension less than

. Also,
, therefore there is at most one codeword with dimension

greater than . Thus, for and
for . Also, adding

and to a code with minimum injection distance
and codewords of dimensions in does not decrease

the minimum distance. Thus,
for . When , , and thus

.

Proposition 13 relates to and
.
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Proposition 13: For all , , and ,
; furthermore,

when , . Also,
.

Proof: A code with minimum subspace distance
has minimum injection distance by (4) and hence

. Similarly, a code with min-
imum injection distance has minimum subspace distance
and hence .

Let be a code with minimum injection distance whose
codewords have dimensions in . For all codewords and ,

. Thus, has minimum subspace distance for
, and hence .

Proposition 12 finally yields
.

Any CDC in with minimum injection distance
is a subspace code with minimum injection distance , hence

for all . Also, the codewords with
dimension in a subspace code with minimum injection dis-
tance form a CDC in with minimum injection dis-
tance at least , hence

.

We now derive more bounds on . Proposition 14
is the analogue of Proposition 3 for the injection metric, and its
proof is hence omitted.

Proposition 14: For all , , and , we have
, where

.

By extending the puncturing of subspaces introduced in [3],
we finally derive below a Singleton bound for injection metric
codes.

Proposition 15 (Singleton Bound for Subspace Codes in the
Injection Metric): For all , , and ,

.
Proof: Let . We define the puncturing

from to as follows. If
, then ; otherwise, if ,

then is a fixed -subspace of . For all
, it is easily shown that

, and hence if .
Therefore, if is a code in with minimum injection

distance , then is a code in
with minimum injection distance and cardinality
. The first inequality follows. Applying it times yields

.

We remark that although the puncturing defined in the proof
of Proposition 15 depends on , the bounds in Proposition 15
do not.

We now compare the cardinalities of optimal subspace
codes and optimal CDCs with the same minimum injection
distance . We first establish the relation between
and in Proposition 16.

Proposition 16 (Comparison Between Optimal Sub-
space Codes and CDCs in the Injection Metric): For

The proof of Proposition 16 is similar to that of Proposition
4 and is hence omitted. We also obtain another relation between

and .

Corollary 1: For

Also, .
Proof: The lower bounds on follow Propo-

sition 13. Furthermore, by choosing in Proposition
16, we have . Since

, we obtain
. The last inequality follows from (5).

Corollary 1 provides several interesting insights. First, the
upper and lower bounds are all tight up to a scalar. Second, for
any optimal subspace code with minimum injection distance
and cardinality , the optimal (or nearly optimal) sub-
space codes with minimum subspace distance have the same
cardinality up to a scalar. Third, the last inequality in Corollary 1
implies that such nearly optimal subspace codes with minimum
subspace distance exist: KK codes in are such
codes.

Based on Proposition 16, we now determine the asymp-
totic rates of subspace codes and CDCs with the injection
metric. Let us use the normalized parameters defined

earlier and , where is the minimum injection
distance of a code, and define the asymptotic maximum

rate for a sub-
space code with the injection metric and the asymptotic rate

for a CDC.

Proposition 17 (Asymptotic Rate of Packing Subspace Codes
in the Injection Metric): For , ; or

, . For or ,
; for , ;

for , .

The proof of Proposition 17 is similar to that of Proposition
5 and hence omitted.

Propositions 16 and 17 provide several important insights on
the design of subspace codes with the injection metric. First,
Proposition 16 indicates that optimal CDCs with dimension
being half of the block length up to rounding ( and

) are optimal subspace codes with the injection
metric up to a scalar. In this case, the optimal CDCs have a
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TABLE II
COMPARISON OF BOUNDS ON � ��� ��� �� FOR � FROM 2 TO 5

limited rate loss as opposed to optimal subspace codes with the
same error correction capability. When , the rate loss
suffered by optimal CDCs increases with . Proposition
17 indicates that using CDCs with dimension
leads to a decrease in rate on the order of .
Similarly to the subspace metric, the rate loss for CDCs using
the injection metric increases with . Hence, using a CDC
with a dimension further from leads to a high rate loss. The
combinatorial explanation in Section III-B also applies in this
case.

We also comment that the asymptotic rates in Proposition 17
for subspace codes come from Singleton bounds. The asymp-
totic rate is achieved by KK codes, and the asymptotic
rate is achievable also by KK codes when .

Proposition 17 also compares the difference between asymp-
totic rates of subspace codes with the subspace and injection
metrics. Although and are different, the optimal
subspace codes with the two metrics have similar asymptotic
behavior. We note that a CDC with minimum injection distance

has minimum subspace distance , which implies
that as long as . Also, as shown
above, CDCs in with minimum injection distance
are both asymptotically optimal subspace codes with minimum
subspace distance and asymptotically optimal sub-
space codes with minimum injection distance . Finally, when
the asymptotic rate is fixed, the relative subspace distance of
optimal subspace codes is twice as much as the relative injec-
tion distance . The implication of this on the error correction
capability also depends on the decoding method.

In Table II, we compare the bounds on derived in
this paper with each other for , , and ranging from

to (by Proposition 12, for ).
We consider the lower bound in Proposition 13 and its refine-
ment in Proposition 14, while the upper bound comes from
Proposition 13. Note that Proposition 16 is not included in the
comparison since its primary purpose is to compare the car-
dinalities of optimal subspace codes and optimal CDCs with
the same minimum injection distance. Although some bounds
rely on whose values are unknown in general, the
values in Table II are obtained by using constructions in [11]
and [7] as lower bounds on and the upper bound
on in [9]. The cardinalities of CDCs with dimen-
sion in [11] and [7] are quite close to the lower bound
in Proposition 14, again supporting our conclusion that the rate
loss suffered by properly designed CDCs is smaller when the
dimension is close to . Finally, similar to the subspace dis-
tance case, the tightness of the bounds improves as the minimum
distance of the code increases, leading to very tight bounds for

.

C. Covering Properties of Subspace Codes
With the Injection Metric

We now consider the covering properties of subspace
codes with the injection metric. The injection covering ra-
dius in of is defined as .
We denote the minimum cardinality of a subspace code with
injection covering radius in as . Since

and , we assume
henceforth. We first determine the minimum

cardinality of a code with injection covering radius when
.

Proposition 18: For , . If
, then .

Proof: Let be a subspace with dimension . Then,
for all with , we have

by (2); similarly, for all with
, we have

by (3). Thus, covers with radius and
for .

If , then it is easily shown that has
covering radius , and hence .
However, for any , then either

or
. Thus, no single subspace can cover the pro-

jective space with radius and .

We thus consider henceforth. Lemma 4 relates
to and .

Lemma 4: For all , , and ,
and

.
Proof: A code with injection covering radius has sub-

space covering radius , hence .
Also, a code with subspace covering radius has injection cov-
ering radius , hence .

For , let be a CDC in
with covering radius and cardinality and
let . Then, is a sub-
space code with injection covering radius and cardinality

.

Proposition 19 is the analogue of Proposition 7 for the injec-
tion metric.

Proposition 19 (Sphere Covering Bound for Subspace Codes
in the Injection Metric): For all , , and ,

, where the minimum is taken over
all integer sequences satisfying for all

and for .

The lower bound in Proposition 19 is again based on the op-
timal solution to an integer linear program, and hence deter-
mining the lower bound is computationally infeasible for large
parameter values.

Proposition 20 determines an upper bound on , by
applying the universal greedy algorithm in [14, Th. 12.2.1] to
construct covering codes in the injection metric. Proposition 20
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TABLE III
SUMMARY OF RESULTS

is a direct application of the bound derived in [14, Th. 12.2.1]
on the cardinality of a code returned by this algorithm. We re-
mark that this bound is only semiconstructive, as it determines
an algorithm to construct covering subspace codes but does not
design the actual codes.

Proposition 20 (Greedy Bound for Covering Codes in
the Injection Metric): For all , , and ,

.

We finally determine the asymptotic behavior
of by using the asymptotic rate

. According to
Proposition 11, the volume of a ball with injection radius is
constant up to a scalar. The consequence of this geometric
result is that the greedy algorithm used to prove Proposition
20 will produce asymptotically optimal covering codes in the
injection metric. However, since the volume of balls in the
subspace metric does depend on the center (see Proposition 1),
a direct application of the greedy algorithm for the subspace
metric does not necessarily produce asymptotically optimal
covering codes in the subspace metric.

Proposition 21 (Asymptotic Rate of Covering Sub-
space Codes in the Injection Metric): For ,

. For , .
Proof: By Proposition 18, for . We

have

by Lemma 1 and Proposition 11. This asymptotically becomes
for . Similarly, Proposition 20,

Lemma 1, and Proposition 11 yield

which asymptotically becomes for
.

The proof of Proposition 21 indicates that the minimum cardi-
nality of a covering subspace code with the injection
metric is on the order of . A covering sub-
space code is easily obtained by taking the union of optimal cov-
ering CDCs for all constant dimensions, leading to a code with
cardinality . By [7], the cardinality of

the union is on the order of . Thus, a union
of optimal covering CDCs (in their respective Grassmannians)
results in asymptotically optimal covering subspace codes with
the injection metric.

Propositions 10 and 21 as well as their implications illus-
trate the differences between the subspace and injection metrics.
First, the asymptotic rates of optimal covering subspace codes
with the two metrics are different. Second, a union of optimal
covering CDCs (in their respective Grassmannians) results in
asymptotically optimal covering subspace codes with the injec-
tion metric only, not with the subspace metric. These differences
can be attributed to the different behaviors of the volume of a
ball with subspace and injection radius. Although

, Proposition 1 indicates that decreases with
, while according to Proposition 11, remains

asymptotically constant. Hence, for , the
balls with subspace radius centered at a subspace with dimen-
sion have significantly smaller volumes than their counterparts
with an injection radius. Therefore, covering the subspaces with
dimension requires more balls with subspace radius than
balls with injection radius , which explains the different rates
for and . Also, since the volume of a ball with sub-
space radius reaches its minimum for and
has the largest cardinality among all Grassmannians, using cov-
ering CDCs of dimension to cover is not ad-
vantageous. Thus, a union of covering CDCs does not lead to
an asymptotically optimal covering subspace code in the sub-
space metric.

V. CONCLUSION

In this paper, we derive packing and covering properties of
subspace codes for the subspace and the injection metrics. We
determine the asymptotic rates of packing and covering codes
for both metrics, compare the performance of CDCs to that of
general subspace codes, and provide constructions or semicon-
structive bounds of nearly optimal codes in all four cases. These
results are briefly summarized in Table III.

Despite these results, some open problems remain for sub-
space codes. First, our bounds on the volumes of balls derived in
Lemma 1 and Propositions 1 and 11 may be tightened. Although
the ratio between the upper and lower bounds is a function of the
field size which tends to as tends to infinity, it is unknown
whether this ratio is the smallest that can be established. This
issue also applies to the bounds on packing subspace codes in
Propositions 4 and 16, where the ratios between upper and lower
bounds are similar functions of . Also, we only considered balls
with radii up to , as only this case was useful for our deriva-
tions; the case where the radius is above remains unexplored.
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Second, the bounds on covering codes in both the subspace and
the injection metrics derived in this paper are only asymptoti-
cally optimal. It remains unknown whether any of these bounds
is tight up to a scalar. Third, the design of packing and covering
subspace codes is an important topic for future work. This is es-
pecially the case for covering codes in the subspace metric, as
no asymptotically optimal construction is known so far. Finally,
the aim of this paper was to derive simple bounds on subspace
codes which are good for all parameter values, especially large
values. On the other hand, a wealth of ad hoc bounds and heuris-
tics can be used to tighten our results for small parameter values.

APPENDIX

A. Proof of Proposition 1

Proof: When , we have and
for all . Hence,

by (1), which proves the lower bound. Also,
by (1), which

proves the upper bound.
We now prove the bounds on for . By

definition, is a double
summation of exponential terms. The main idea of the proof is
to determine the largest term in the summation: this not only
gives a good lower bound, but the whole summation can also be
upper bounded by that term times a constant. First, by Lemma
2, , where satisfies

. Thus,
by (1), where .
Hence, ,

where . Since is maximized for

, we need to consider the following
three cases.

• Case I: . We have and hence is
maximized for : .
Thus, , and it is easy to show that

since
.

• Case II: . We have
and hence is maximized for :

. It is
easily shown that for all
and hence .
We also obtain

.
• Case III: . We have and hence is

maximized for : .
Thus, , and it is easy to show that

since
.

From the discussion above, we obtain
which proves the lower bound, and

. We
now show that
by distinguishing the following three cases.

First, if

since .
Second, if , we have

and hence
for all . We obtain

and hence
since .

Third, if , which implies , it can
be shown that

. Hence

Thus, .

B. Proof of Proposition 11

Proof: First, . We now
prove the upper bound by determining the largest term in the
double summation of . Since ,
we assume without loss of generality. The triangular
inequality indicates that if or

; also, by definition of the injection distance, if
. We can hence restrict the range of parameters

in the summation formula of as follows:

(8)

By Lemmas 3 and 1, we have
for and

for ,
which with (8) yields
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(9)

where we make the following changes of variables: ,
, in (9). Since , we

have . Also, for ,
and hence ; similarly, we obtain

. Hence, (9) leads to

(10)

where we set and use in (10).
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