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Abstract— In this paper we investigate the decoder error
probability (DEP) of bounded rank distance decoders for rank
metric codes over two types of channels motivated by network
coding. The first channel is a rank symmetric channel where
additive errors with the same rank are equiprobable, and for the
second and more general channel, errors with the same row or
column space are equiprobable. For arbitrary rank metric codes,
we first derive analytical expressions of as well as upper bounds
on DEPs of bounded distance decoders over the rank symmetric
channel, and then establish upper bounds on DEP of bounded
distance decoders over the equal row (or column) space channel.
Our results show that DEP of bounded distance decoders for
any rank metric code with error correction capability t decreases
exponentially with t2. For maximum rank distance (MRD) codes,
we determine the exact DEP of bounded distance decoders over
equal row (or column) space channels as long as MRD codes or
their transpose exist, and show that MRD codes have the highest
DEP up to a scalar. These results provide insights on the error
performance of rank metric codes used for error correction in
random linear network coding.

I. INTRODUCTION

Rank metric codes [1]–[3] have been receiving growing at-
tention due to their applications in storage systems [2], public-
key cryptosystems [4], space-time coding [5], and error control
for random network coding [6]. The pioneering works in [1]–
[3] have established many important properties of rank metric
codes. Independently in [1]–[3], the maximum cardinality of a
code with a given minimum rank distance was determined. We
refer to linear or nonlinear codes that achieve the maximum
cardinality as maximum rank distance (MRD) codes, and the
class of linear MRD codes proposed independently in [1]–[3]
as Gabidulin codes henceforth. Different decoding algorithms
for Gabidulin codes were proposed in [1], [2], [7], [8], and
their complexities were compared in [9].

While random linear network coding has proved to be a
powerful tool for disseminating information in networks, it is
highly susceptible to errors caused by various sources such
as noise, malicious or malfunctioning nodes, or insufficient
min-cut. If received packets are linearly combined at random
to deduce the transmitted message, even a single error in one
erroneous packet could render the entire transmission useless.
Thus, error control for random linear network coding is critical
and has received growing attention recently. Two types of
error control techniques for random network coding have been
proposed: coherent techniques [10], [11] rely on the underlying
network topology, while noncoherent error control [6], [12]

do not assume any specific knowledge of the network. Non-
coherent techniques are hence more flexible and more adapted
to time-varying networks. Codes defined in Grassmannians
associated with the vector space play a significant role in error
control for noncoherent random linear network coding; such
codes are also referred to as constant-dimension codes (CDCs)
[12]. CDCs are closely related to rank metric codes through
the lifting operation [6]. In particular, liftings of Gabidulin
codes are nearly optimal CDCs [12] and a generalized rank
metric decoder aimed at correcting the errors occurring on the
network is proposed in [6]. Thus error control in random linear
network coding using CDCs can be turned into a rank metric
problem [6], and the errors occurring in the network result
into additive rank errors.

In this paper, we investigate the error performance of a
bounded rank distance decoder for rank metric codes and
MRD codes in particular, which provides insight on the
performance of the decoder in [6] for Gabidulin codes. A
bounded rank distance decoder for MRD codes with error
correction capability t is guaranteed to correct all errors with
rank no more than t. Given a received word, a bounded rank
distance decoder either provides an estimate for the transmitted
codeword or declares decoder failure. A decoder error occurs
when the estimate is not the actual transmitted codeword. The
main results of this paper are analytical expressions and upper
bounds on the decoder error probability (DEP) of bounded
rank distance decoders for MRD codes. We consider two types
of additive rank errors, both being motivated by error correc-
tion in random linear network coding. We emphasize that the
DEP considered herein is conditional: it is the probability that
a bounded rank distance decoder, correcting up to t rank errors,
makes an erroneous correction. Since decoder failures can be
remedied by error masking or retransmission, decoder errors
are often more detrimental to the overall system performance
and hence often considered separately. This is the main reason
we focus on the DEP.

The main contributions of the paper are:
• We first consider a rank symmetric channel, where all

additive errors with the same rank are equiprobable. For
any rank metric code over the rank symmetric channel,
we derive an analytical expression for DEP of bounded
distance decoders, which depends on the weight distribu-
tion of the code, as well as upper bounds. Our results
show that the DEP of bounded distance decoders for
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any rank metric code with error correction capability t
decreases exponentially with t2. For MRD codes over
the rank symmetric channel, we derive the exact DEP of
bounded distance decoders, and show that MRD codes
have the highest DEP up to a scalar.

• We then consider a more general channel, where all
additive errors with the same row (or column) space are
equiprobable. For any rank metric code over the equal
row (or column) space channel, we derive upper bounds
on the DEP of bounded rank distance decoders. Again
our results show that DEP of bounded distance decoders
for any rank metric code with error correction capability
t decreases exponentially with t2. For MRD codes over
the equal row (or column) space channel, we derive the
exact DEP of bounded distance decoders as long as MRD
codes or their transpose exist.

Our work in this paper differs from the error performance
analysis of rank metric codes in [13] in several aspects,
and is an extension of our previous work [14]. The error
performance analysis in [13] was aimed at crisscross errors
and as such, assumes different channel models and considers
decoder errors and decoder failures together. Our previous
work [14] derived only upper bounds on bounded distance
decoders for Gabidulin codes over the rank symmetric channel.
Our results in this paper differ from those derived in [14] in
three ways. First, they are more general in terms of the channel
model, as it considers channels where all additive errors with
the same row or column span are equiprobable. Second, these
results are not only applicable to Gabidulin codes, but also to
any linear or nonlinear rank metric code. Finally, because of
their expanded span, the derivation of the results in this paper
use a significantly different approach to the one used in [14].

Our results may also be seen as a nontrivial extension of the
error performance of Hamming metric codes and maximum
distance separable (MDS) codes in particular in [15]–[17].
In [15], an upper bound on the DEP of bounded Hamming
distance decoders for Reed-Solomon codes (in fact, of any
linear MDS code) was derived for a channel where all errors
with the same Hamming weight are equiprobable. This work
was refined in [16], where the exact DEP of linear MDS
codes was determined over the same channel. In [17], the
results in [15] were extended to more general channels and
to any linear code. More precisely, [17] introduces error-value
symmetric channels, where all errors with the same support
are equiprobable, thus taking bursty channels into account.
While our previous work in [14] parallels the work in [15], our
analytical expression of the DEP of bounded distance decoders
for MRD codes over the rank symmetric channel parallels the
work in [16]. However, our approach to derive our results for
MRD codes is significantly different from the one used in [16].
The equal row (or column) space channel we considered can
also be viewed as counterparts of the error-value symmetric
channels in [17], and hence our results for arbitrary rank metric
codes over the equal row (or column) space channel parallel
the results in [17].

II. PRELIMINARIES

The set GF(q)m×n of m×n matrices over GF(q), endowed
with the rank distance dR(X,Y) def= rk(X−Y), constitutes a
metric association scheme [3]. Its valencies [18] NR(u) are
the numbers of matrices at rank distance u from any matrix in
GF(q)m×n for all u. They are given by NR(u) =

[
n
u

]
α(m,u),

where α(m, 0) = 1 and α(m, u) =
∏u−1

i=0 (qm− qi) for u ≥ 1
and

[
n
u

]
= α(n,u)

α(u,u) is the Gaussian binomial [19]. This term
satisfies [14]

qr(n−r) ≤
[
n

r

]
< K−1

q qr(n−r) (1)

for all 0 ≤ r ≤ n, where Kq =
∏∞

j=1(1 − q−j). The
intersection numbers JR(u, s, d) for rank metric codes, which
are critical to association schemes, were derived in [20]. They
are the volume of the intersection of two spheres with rank
radii u and s and with distance d between their centers. In
particular, JR(t, d − t, d) = qt(d−t)

[
d
t

]
for all 0 ≤ t ≤ d ≤

min{n,m}, and they have the following basic properties [18]:

NR(d)JR(u, s, d) = NR(u)JR(d, s, u) (2)
n∑

u=0

JR(u, s, d) = NR(s). (3)

The volume of a ball with rank radius t in GF(q)m×n is
denoted as VR(t) =

∑t
s=0 NR(s).

A rank metric code can be viewed as a subset of GF(q)m×n.
The minimum rank distance of a code is simply the min-
imum distance over all pairs of distinct codewords. It is
shown [1]–[3] that the maximum cardinality of a rank met-
ric code in GF(q)m×n with minimum rank distance d is
min{qm(n−d+1), qn(m−d+1)}. We refer to codes with maxi-
mum cardinality as MRD codes, and the subclass of linear
MRD codes introduced independently in [1]–[3] as Gabidulin
codes. The number of codewords with rank r in a linear MRD
code in GF(q)m×n (n ≤ m) with minimum rank distance d
was determined in [1], [3] and is denoted as M(q, m, n, d, r).
In particular, we have M(q, m, n, d, d) =

[
n
d

]
(qm − 1).

A constant-rank code (CRC) is a rank metric code whose
codewords have the same rank [21]. The maximum cardinality
of a CRC in GF(q)m×n with minimum rank distance d
and constant-rank r, denoted as AR(q, m, n, d, r), is studied
in [21]. In particular, it is shown that AR(q, m, n, d, r) =
AR(q, n, m, d, r) and, for n ≤ m and d ≤ r,

AR(q, m, n, d, r) ≤
[
n

r

]
α(m, r − d + 1). (4)

III. DEP OF RANK METRIC CODES

We now introduce and motivate our choice of additive
rank error models and their significance to error correction
in random linear network coding. We consider the case of an
adversary who injects linearly independent packets maliciously
on the network using two strategies. In the first strategy, the
adversary injects a number of packets chosen at random with
equal probabilities. The packets undergo linear combinations
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through the network, and result into an additive error whose
rank depends on the number of packets injected. Hence our
first error model assumes that all additive errors with the
same rank are equiprobable. The second and more general
strategy assumes the adversary has some knowledge on and
takes advantage of the data transmitted or the protocol used.
Hence the adversary may choose to inject some packets which
corrupt the messages more efficiently than others [22]. Due to
the vector-space preserving property of linear network coding,
the row space of the erroneous packets remains unchanged
through the linear combinations operated at different nodes.
Hence, the additive error can take any value provided its row
space is fixed. This leads to our second model of additive
rank errors, where all errors with the same row space are
equiprobable. Finally, because of the properties of the rank
metric, we also consider channels where errors with the same
column space are equiprobable.

A. DEP over a rank symmetric channel

We now study the DEP of a rank metric code in GF(q)m×n

with minimum rank distance d using a bounded rank distance
decoder over a rank symmetric channel, defined below.

Definition 1: A channel on GF(q)m×n is rank symmetric
if the inputs and the outputs are matrices in GF(q)m×n and
if all the outputs at the same rank distance from the input are
equiprobable.

Since using a code C ⊆ GF(q)m×n over a rank symmetric
channel on GF(q)m×n is equivalent to using its transpose code
CT = {CT : C ∈ C} over a rank symmetric channel on
GF(q)n×m, we assume n ≤ m without loss of generality.

Given a matrix M ∈ GF(q)m×n as input, a bounded
distance decoder for a code C either produces the codeword
in C at distance at most t = bd−1

2 c from M if such a
codeword exists, or returns a failure otherwise. The decoder
error probability (DEP) is the probability that the decoder
produces a codeword different to the one that was sent. The
output of the bounded rank distance decoder depends on
u = dR(M,C), where C ∈ C is the sent codeword. The
decoder returns C if and only if u ≤ t, and returns a failure
for t < u < d − t. The DEP for u ≥ d − t depends on the
rank distance distribution Aw(C) of the code.

Proposition 1: Assuming a codeword C ∈ C, a code in
GF(q)m×n with minimum rank distance d, is sent over a rank
symmetric channel and the channel output is distance u from
C, the DEP of a bounded rank distance decoder satisfies

PR(C, u) =
1

NR(u)

n∑

w=d

Aw(C)
t∑

s=0

JR(u, s, w) (5)

≤ 1
NR(u)

n∑

w=d

[
n

w

]
α(m,w − d + 1)

·
t∑

s=0

JR(u, s, w) (6)

< K−2
q q−t(m−n+t). (7)

Proof: We have PR(C, u) = D(C,u)
NR(u) , where D(C, u)

is the number of decodable matrices at distance u from C.
The set of decodable matrices is the disjoint union of balls
with radius t around the codewords. For any codeword D at
distance w from C, there exist exactly JR(u, s, w) matrices M
such that dR(D,M) = s and dR(C,M) = u. Summing for all
s and all D, we obtain (5).

Also, since {D − C : D ∈ C, dR(D,C) = w} is a CRC
with minimum distance at least d and constant-rank w, we
have Aw(C) ≤ AR(q, m, n, d, w) ≤ [

n
w

]
α(m, w − d + 1)

by (4), which leads to (6). We have
[

n
w

]
α(m,w − d + 1) <

K−1
q q−m(d−1)NR(w), and hence

PR(C, u) <
1

NR(u)
K−1

q q−m(d−1)
t∑

s=0

n∑

w=d

NR(w)JR(u, s, w)

= K−1
q q−m(d−1)

t∑
s=0

n∑

w=d

JR(w, s, u) (8)

≤ K−1
q q−m(d−1)VR(t), (9)

where (8) and (9) follow (2) and (3), respectively. Using
VR(t) < K−1

q qt(m+n−t) [14], we obtain (7).
It is remarkable that the upper bound on the DEP in (7) does

not depend on C and u for any rank metric code. In fact,
applying (7) to linear MRD codes leads to [14, Proposition 6].
This general result on the error performance of rank metric
codes parallel that for Hamming metric codes [17].

We now show that MRD codes have the greatest DEP
among all rank metric codes up to a scalar in nontrivial cases.
Let us denote the DEP of an MRD code in GF(q)m×n with
minimum rank distance d as PR,MRD(u).

Corollary 1: Let C be any rank metric code in GF(q)m×n

(n ≤ m) with minimum rank distance d and let C ∈ C. Then
if q > 2, n < m, or d 6= m − 1, PR(C, u) < HqPR,MRD(u),
where H2 = 3.5 and Hq = q−1

q−2 for q > 2.
Proof: By [21], we have HqM(q, m, n, d, r) >

AR(q, m, n, d, r) for n ≥ r ≥ d, as long as q >
2, n < m, or d 6= m − 1. Hence HqPR,MRD(u) >

1
NR(u)

∑n
w=d AR(q,m, n, d, w)

∑t
s=0 JR(u, s, w) ≥ PR(C, u).

In many applications, the probability that the received
matrix is at distance u from the sent codeword decreases
rapidly with u, and hence the overall DEP can be approximated
by PR(C, d− t). We consider this special case next.

Proposition 2: Assume a codeword C ∈ C, a code in
GF(q)m×n with minimum rank distance d, is sent over a rank
symmetric channel and the channel output is distance u = d−t
from C, the DEP of a bounded rank distance decoder is given
by

PR(C, d− t) = qt(d−t)

[
d
t

]
[

n
d−t

]
α(m, d− t)

Ad(C). (10)

In particular, the DEP of an MRD code satisfies PR,MRD(d−t) >
Kqq

−t(m+n−t) when d = 2t + 1.
Proof: First, (5) yields PR(C, d−t) = JR(d−t,t,d)

NR(d−t) Ad(C),
which gives (10). For an MRD code, we have Ad(C) =
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M(q, m, n, d, d) =
[
n
d

]
(qm − 1). Using the bounds on

the Gaussian binomial in (1), we obtain PR,MRD(d − t) >
Kqq

−t(m−n+t) when d = 2t + 1.
When u = d− t, Proposition 2 above not only provides the

DEP for any code, but also shows that the upper bound on the
DEP for MRD codes in (7) is tight up to a scalar.

B. DEP over an equal row or column space channels

We now consider channels where the errors with the same
row (or column) space are equiprobable.

Definition 2: A channel on GF(q)m×n is equal row (col-
umn) space if the error is additive and the error patterns with
the same row (column) space are equiprobable.

Equal row and column space channels are interesting in
several respects. First, rank symmetric channels are both equal
row and equal column space channels, hence the following
results will be generalizations of those in Section III-A. Also,
considering these more general channels does not dramatically
affect the tightness of the bounds. Finally, it is remarkable that
these channels may also be used to model other applications
of rank metric codes. Rank metric codes can be used for
the correction of two-dimension errors [2], [23] (i.e., errors
confined to a certain number of rows and columns) in storage
equipments. Hence, our model encompasses the case of two-
dimensional errors, where some rows or columns are more
likely to be in error than others.

Note that using a code C over an equal row space channel
on GF(q)m×n is equivalent to using its transpose code over a
column space channel on GF(q)n×m. We study equal row
space channels first. In this case, it is clear that the DEP
depends not only on the rank u of the error, but also on its row
space U ∈ Eu(q, n). We hence derive a bound on PR(C, U)
for all codes, and we also obtain the exact value of PR(U) for
linear MRD codes when n ≤ m, thus generalizing the results
in Proposition 1 for equal row space channels.

Proposition 3: Assuming a codeword C ∈ C, a code in
GF(q)m×n with minimum rank distance d, is sent over an
equal row space channel and the channel error has row space
U ∈ Eu(q, n), the DEP of a bounded rank distance decoder
satisfies

PR(C, U) ≤ 1
NR(u)

n∑

w=d

[
n

w

]
α(m,w − d + 1)

·
t∑

s=0

JR(u, s, w) (11)

< K−2
q q−t(m−n+t). (12)

Furthermore, if n ≤ m and C is a linear MRD code, then the
DEP is given by

PR,MRD(U) =
1

NR(u)

n∑

w=d

M(q, m, n, d, w)
t∑

s=0

JR(u, s, w).

(13)
The proof of Proposition 3 is given in Appendix A. We

remark that the right hand sides of (11) and (12) are exactly
the ones in (6) and (7), respectively. Therefore, the upper

bounds on the DEP obtained for rank symmetric channels
are generalized to row symmetric channels without loss of
tightness. By comparing (13) to (5), we also conclude that the
DEP of a linear MRD code in GF(q)m×n (n ≤ m) over any
row space channel is equal to that of the same code over a
rank symmetric channel.

A similar upper bound can be obtained for an equal column
space channel.

Proposition 4: Assuming a codeword C ∈ C, a code in
GF(q)m×n with minimum rank distance d, is sent over an
equal column space channel and the channel error has column
space U ∈ Eu(q, m), the DEP of a bounded rank distance
decoder satisfies

PR(C, U) ≤ 1
NR(u)

n∑

w=d

[
m

w

]
α(n,w − d + 1)

·
t∑

s=0

JR(u, s, w)

< K−2
q q−t(n−m+t).

Furthermore, if n ≥ m and C is the transpose code of a linear
MRD code, then the DEP is given by

PR,MRD(U) =
1

NR(u)

m∑

w=d

M(q, n, m, d, w)
t∑

s=0

JR(u, s, w).

The proof of Proposition 4 is similar to that of Proposition 3
and is hence omitted.

IV. CONCLUSION AND DISCUSSION

In this paper, we investigated the error performance of a
bounded rank distance decoder for rank metric codes over
two types of channels. We derived bounds on the decoder
error probability of any rank metric code and determined
the order of the decoder error probability of MRD codes,
and in particular of Gabidulin codes, under these settings.
However, the decoder proposed in [6] for Gabidulin codes
is a generalized bounded rank distance decoder, which can
also correct the so-called erasures and deviations [6]. Hence
our results can be applied to the decoder in [6] for the
special case where no erasures and no deviations occurred.
Nonetheless, we believe our study provides insight on the
error performance of the decoder proposed in [6]. Furthermore,
a natural extension of our work is the study of the error
performance of the decoder in [6] in the case where errors,
erasures, and deviations occurred.

APPENDIX

A. Proof of Proposition 3

In order to prove Proposition 3, we need two technical
lemmas. For any R ∈ GF(q)m×n, we denote the number of
matrices with row space W and at rank distance s from R as
g(W, s,R). We prove below that g(W, s,R) only depends on
R through its row space.

Lemma 1: For all R,S ∈ GF(q)m×n with the same row
space U , g(W, s,R) = g(W, s,S), and hence g(W, s,R) =
g(W, s, U).
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Proof: Suppose X ∈ GF(q)m×n has row space W and
satisfies rk(X − R) = s. We can express S = AR, where
A ∈ GF(q)m×m has full rank, hence Y = AX has row
space W and satisfies rk(Y − S) = rk(X − R) = s. Thus
g(W, s,S) ≥ g(W, s,R). Using R = A−1S, we show that
g(W, s,S) ≤ g(W, s,R); hence g(W, s,R) = g(W, s,S).

Lemma 2: For all U ∈ Eu(q, n),∑
W∈Ew(q,n) g(U, s,W ) = [n

w]
[nu]

JR(u, s, w).
Proof: By counting the number of pairs of

matrices (R,W) where R(R) = U , R(W) = W , and
dR(R,W) = s in two ways, we have α(m,u)g(W, s, U) =
α(m,w)g(U, s, W ). Hence

∑
W∈Ew(q,n) g(U, s, W ) =

α(m,u)
α(m,w)

∑
W∈Ew(q,n) g(W, s, U) = α(m,u)

α(m,w)JR(w, s, u). Using

(2), we obtain
∑

W∈Ew(q,n) g(U, s, W ) = [n
w]
[nu]

JR(u, s, w).
We now give the proof of Proposition 3.

Proof: Let C be a rank metric code in GF(q)m×n

with minimum rank distance d. We have PR(C, U) =
1

α(m,u)

∑t
s=0 δ(U, s,C), where δ(U, s,C) is the num-

ber of matrices X at distance s from the code, and
such that R(X − C) = U . Hence δ(U, s,C) =∑

W :dim(W )≥d AW (C)g(U, s, W ), where AW (C) = |{D ∈
C : R(D − C) = W}| for all W ∈ E(q, n). We now
give an upper bound on AW (C). Let CW = {D − C :
D ∈ C, R(D − C) = W}, then the restriction of CW to W
[14] forms a constant-rank code in GF(q)m×w with constant-
rank w and minimum distance d. Therefore, AW (C) ≤
AR(q, m, w, d, w) ≤ α(m,w − d + 1) by (4). The DEP hence
satisfies

PR(C, U)

=
1

α(m,u)

t∑
s=0

n∑

w=d

∑

W∈Ew(q,n)

AW (C)g(U, s, W )

≤ 1
α(m,u)

t∑
s=0

n∑

w=d

α(m, w − d + 1)
∑

W∈Ew(q,n)

g(U, s,W )

=
1

NR(u)

n∑

w=d

[
n

w

]
α(m,w − d + 1)

t∑
s=0

JR(u, s, w), (14)

where (14) follows Lemma 2.
When C is an MRD code with minimum rank distance

d, it can be shown that AW (C) = M(q, m,w, d, w) =[
n
w

]−1
M(q, m, n, d, w), and hence

δ(U, s,C) =
α(m, u)
NR(u)

n∑

w=d

M(q, m, n, d, w)JR(u, s, w),

which leads to (13).
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